Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jan;89(1):150–156. doi: 10.1172/JCI115555

Correlates of aldosterone-induced increases in Cai2+ and Isc suggest that Cai2+ is the second messenger for stimulation of apical membrane conductance.

D Petzel 1, M B Ganz 1, E J Nestler 1, J J Lewis 1, J Goldenring 1, F Akcicek 1, J P Hayslett 1
PMCID: PMC442830  PMID: 1729267

Abstract

Studies were performed on monolayers of cultured A6 cells, grown on permeable filters, to determine the second messenger system involved in the aldosterone-induced increase in electrogenic sodium transport. Addition of aldosterone (1 microM) to the solution bathing the basal surface of cells caused both an increase in Isc and threefold transient rise in intracellular calcium Cai2+ after a delay of approximately 60 min. Because both events were inhibited by actinomycin D and cyclohexamide, they appeared to require transcriptional and translational processes. Addition of BAPTA to the bathing media to chelate Cai2+ reduced Isc and the delayed Cai2+ transient; 50 microM BAPTA inhibited Isc and the rise in Cai2+ by greater than 80%. Further studies suggested that the action of aldosterone to increase Isc may be dependent on a calcium/calmodulin-dependent protein kinase, because W-7 and trifluoperazine reduced the aldosterone-induced Isc in a dose-dependent manner. Taken together, these observations suggest that calcium is a second messenger for the action of aldosterone on sodium transport, and suggest, for the first time, that agonists which bind to intracellular receptors can utilize, via delayed processes dependent on de novo transcription and translation, intracellular second messenger systems to regulate target cell function.

Full text

PDF
150

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J., Galione A. Cytosolic calcium oscillators. FASEB J. 1988 Dec;2(15):3074–3082. doi: 10.1096/fasebj.2.15.2847949. [DOI] [PubMed] [Google Scholar]
  2. Bredt D. S., Mourey R. J., Snyder S. H. A simple, sensitive, and specific radioreceptor assay for inositol 1,4,5-trisphosphate in biological tissues. Biochem Biophys Res Commun. 1989 Mar 31;159(3):976–982. doi: 10.1016/0006-291x(89)92204-3. [DOI] [PubMed] [Google Scholar]
  3. CRABBE J. Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J Clin Invest. 1961 Nov;40:2103–2110. doi: 10.1172/JCI104436. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cantiello H. F., Patenaude C. R., Ausiello D. A. G protein subunit, alpha i-3, activates a pertussis toxin-sensitive Na+ channel from the epithelial cell line, A6. J Biol Chem. 1989 Dec 15;264(35):20867–20870. [PubMed] [Google Scholar]
  5. Civan M. M., Hoffman R. E. Effect of aldosterone on electrical resistance of toad bladder. Am J Physiol. 1971 Feb;220(2):324–328. doi: 10.1152/ajplegacy.1971.220.2.324. [DOI] [PubMed] [Google Scholar]
  6. Civan M. M., Rubenstein D., Mauro T., O'Brien T. G. Effects of tumor promoters on sodium ion transport across frog skin. Am J Physiol. 1985 May;248(5 Pt 1):C457–C465. doi: 10.1152/ajpcell.1985.248.5.C457. [DOI] [PubMed] [Google Scholar]
  7. EDELMAN I. S., BOGOROCH R., PORTER G. A. ON THE MECHANISM OF ACTION OF ALDOSTERONE ON SODIUM TRANSPORT: THE ROLE OF PROTEIN SYNTHESIS. Proc Natl Acad Sci U S A. 1963 Dec;50:1169–1177. doi: 10.1073/pnas.50.6.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edmonds C. J., Marriott J. Sodium transport and short-circuit current in rat colon in vivo and the effect of aldosterone. J Physiol. 1970 Nov;210(4):1021–1039. doi: 10.1113/jphysiol.1970.sp009255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Evans R. M. The steroid and thyroid hormone receptor superfamily. Science. 1988 May 13;240(4854):889–895. doi: 10.1126/science.3283939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fidelman M. L., Duncan R. L., Watlington C. O. Effect of aldosterone on 86Rb fluxes in cultured kidney cells (A6). Physiol Chem Phys Med NMR. 1988;20(1):43–53. [PubMed] [Google Scholar]
  11. Foskett J. K., Gunter-Smith P. J., Melvin J. E., Turner R. J. Physiological localization of an agonist-sensitive pool of Ca2+ in parotid acinar cells. Proc Natl Acad Sci U S A. 1989 Jan;86(1):167–171. doi: 10.1073/pnas.86.1.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foskett J. K., Melvin J. E. Activation of salivary secretion: coupling of cell volume and [Ca2+]i in single cells. Science. 1989 Jun 30;244(4912):1582–1585. doi: 10.1126/science.2500708. [DOI] [PubMed] [Google Scholar]
  13. Frindt G., Windhager E. E. Ca2(+)-dependent inhibition of sodium transport in rabbit cortical collecting tubules. Am J Physiol. 1990 Mar;258(3 Pt 2):F568–F582. doi: 10.1152/ajprenal.1990.258.3.F568. [DOI] [PubMed] [Google Scholar]
  14. Ganz M. B., Pekar S. K., Perfetto M. C., Sterzel R. B. Arginine vasopressin promotes growth of rat glomerular mesangial cells in culture. Am J Physiol. 1988 Nov;255(5 Pt 2):F898–F906. doi: 10.1152/ajprenal.1988.255.5.F898. [DOI] [PubMed] [Google Scholar]
  15. Garty H., Yeger O., Yanovsky A., Asher C. Guanosine nucleotide-dependent activation of the amiloride-blockable Na+ channel. Am J Physiol. 1989 May;256(5 Pt 2):F965–F969. doi: 10.1152/ajprenal.1989.256.5.F965. [DOI] [PubMed] [Google Scholar]
  16. Geering K., Claire M., Gaeggeler H. P., Rossier B. C. Receptor occupancy vs. induction of Na+-K+-ATPase and Na+ transport by aldosterone. Am J Physiol. 1985 Jan;248(1 Pt 1):C102–C108. doi: 10.1152/ajpcell.1985.248.1.C102. [DOI] [PubMed] [Google Scholar]
  17. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  18. Halevy J., Boulpaep E. L., Binder H. J., Hayslett J. P. Aldosterone increases the maximal turnover rate of the sodium pump. Pflugers Arch. 1987 Nov;410(4-5):476–480. doi: 10.1007/BF00586528. [DOI] [PubMed] [Google Scholar]
  19. Halevy J., Boulpaep E. L., Budinger M. E., Binder H. J., Hayslett J. P. Glucocorticoids have a different action than aldosterone on target tissue. Am J Physiol. 1988 Jan;254(1 Pt 2):F153–F158. doi: 10.1152/ajprenal.1988.254.1.F153. [DOI] [PubMed] [Google Scholar]
  20. Hamilton K. L., Eaton D. C. Regulation of single sodium channels in renal tissue: a role in sodium homeostasis. Fed Proc. 1986 Nov;45(12):2713–2717. [PubMed] [Google Scholar]
  21. Hidaka H., Sasaki Y., Tanaka T., Endo T., Ohno S., Fujii Y., Nagata T. N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4354–4357. doi: 10.1073/pnas.78.7.4354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Light D. B., Ausiello D. A., Stanton B. A. Guanine nucleotide-binding protein, alpha i-3, directly activates a cation channel in rat renal inner medullary collecting duct cells. J Clin Invest. 1989 Jul;84(1):352–356. doi: 10.1172/JCI114162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mohrmann M., Cantiello H. F., Ausiello D. A. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase c, and pertussis toxin. Am J Physiol. 1987 Aug;253(2 Pt 2):F372–F376. doi: 10.1152/ajprenal.1987.253.2.F372. [DOI] [PubMed] [Google Scholar]
  24. PORTER G. A., BOGOROCH R., EDELMAN I. S. ON THE MECHANISM OF ACTION OF ALDOSTERONE ON SODIUM TRANSPORT: THE ROLE OF RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1964 Dec;52:1326–1333. doi: 10.1073/pnas.52.6.1326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Palmer L. G., Li J. H., Lindemann B., Edelman I. S. Aldosterone control of the density of sodium channels in the toad urinary bladder. J Membr Biol. 1982;64(1-2):91–102. doi: 10.1007/BF01870771. [DOI] [PubMed] [Google Scholar]
  26. Palmer L. G., Speez N. Stimulation of apical Na permeability and basolateral Na pump of toad urinary bladder by aldosterone. Am J Physiol. 1986 Feb;250(2 Pt 2):F273–F281. doi: 10.1152/ajprenal.1986.250.2.F273. [DOI] [PubMed] [Google Scholar]
  27. Perkins F. M., Handler J. S. Transport properties of toad kidney epithelia in culture. Am J Physiol. 1981 Sep;241(3):C154–C159. doi: 10.1152/ajpcell.1981.241.3.C154. [DOI] [PubMed] [Google Scholar]
  28. Prozialeck W. C., Weiss B. Inhibition of calmodulin by phenothiazines and related drugs: structure-activity relationships. J Pharmacol Exp Ther. 1982 Sep;222(3):509–516. [PubMed] [Google Scholar]
  29. Rasmussen H., Kojima I., Apfeldorf W., Barrett P. Cellular mechanism of hormone action in the kidney: messenger function of calcium and cyclic AMP. Kidney Int. 1986 Jan;29(1):90–97. doi: 10.1038/ki.1986.11. [DOI] [PubMed] [Google Scholar]
  30. Rossier B. C., Gäggeler H. P., Rossier M. Effects of 3'deoxyadenosine and actinomycin D on RNA synthesis in toad bladder: analysis of response to aldosterone. J Membr Biol. 1978 Jun 28;41(2):149–166. doi: 10.1007/BF01972630. [DOI] [PubMed] [Google Scholar]
  31. Schwartz G. J., Burg M. B. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol. 1978 Dec;235(6):F576–F585. doi: 10.1152/ajprenal.1978.235.6.F576. [DOI] [PubMed] [Google Scholar]
  32. Smolen J. E., Korchak H. M., Weissmann G. The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils. Biochim Biophys Acta. 1981 Nov 5;677(3-4):512–520. doi: 10.1016/0304-4165(81)90267-1. [DOI] [PubMed] [Google Scholar]
  33. Stoff J. S., Handler J. S., Orloff J. The effect of aldosterone on the accumulation of adenosine 3':5'-cyclic monophosphate in toad bladder epithelial cells in response to vasopressin and theophylline. Proc Natl Acad Sci U S A. 1972 Apr;69(4):805–808. doi: 10.1073/pnas.69.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  35. Verrey F., Schaerer E., Zoerkler P., Paccolat M. P., Geering K., Kraehenbuhl J. P., Rossier B. C. Regulation by aldosterone of Na+,K+-ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J Cell Biol. 1987 May;104(5):1231–1237. doi: 10.1083/jcb.104.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Windhager E. E., Taylor A. Regulatory role of intracellular calcium ions in epithelial Na transport. Annu Rev Physiol. 1983;45:519–532. doi: 10.1146/annurev.ph.45.030183.002511. [DOI] [PubMed] [Google Scholar]
  37. Yanase M., Handler J. S. Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am J Physiol. 1986 Mar;250(3 Pt 1):C517–C522. doi: 10.1152/ajpcell.1986.250.3.C517. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES