Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jan;89(1):234–243. doi: 10.1172/JCI115567

Protective effect of a microtubule stabilizer taxol on caerulein-induced acute pancreatitis in rat.

T Ueda 1, Y Takeyama 1, K Kaneda 1, M Adachi 1, H Ohyanagi 1, Y Saitoh 1
PMCID: PMC442841  PMID: 1370296

Abstract

The effect of taxol, which is a microtubule stabilizer, was examined in a model of acute edematous pancreatitis induced in rat by the administration of caerulein. Prophylactic administration of taxol ameliorated inhibition of pancreatic secretion, increased level of serum amylase, pancreatic edema, and histological alterations in this model. Immunofluorescence studies revealed that taxol stabilized the arrangement of microtubules by the action of promoting tubulin polymerization and prevented inhibition of pancreatic digestive enzyme secretion. In isolated rat pancreatic acini, taxol reversed the inhibition of amylase secretion induced by supramaximal concentrations of cholecystokinin octapeptide and did not affect the binding of cholecystokinin octapeptide to its receptor. The results obtained in this study suggest that microtubule disorganization is the initiating event in caerulein-induced pancreatitis and that the inhibition of pancreatic digestive enzyme secretion by interfering with intracellular vesicular transport due to microtubule disorganization causes caerulein-induced pancreatitis.

Full text

PDF
234

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler G., Rohr G., Kern H. F. Alteration of membrane fusion as a cause of acute pancreatitis in the rat. Dig Dis Sci. 1982 Nov;27(11):993–1002. doi: 10.1007/BF01391745. [DOI] [PubMed] [Google Scholar]
  2. Akiyama T., Nishida E., Ishida J., Saji N., Ogawara H., Hoshi M., Miyata Y., Sakai H. Purified protein kinase C phosphorylates microtubule-associated protein 2. J Biol Chem. 1986 Nov 25;261(33):15648–15651. [PubMed] [Google Scholar]
  3. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5608–5612. doi: 10.1073/pnas.78.9.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gilliland L., Steer M. L. Effects of ethionine on digestive enzyme synthesis and discharge by mouse pancreas. Am J Physiol. 1980 Nov;239(5):G418–G426. doi: 10.1152/ajpgi.1980.239.5.G418. [DOI] [PubMed] [Google Scholar]
  5. Howard W. D., Timasheff S. N. Linkages between the effects of taxol, colchicine, and GTP on tubulin polymerization. J Biol Chem. 1988 Jan 25;263(3):1342–1346. [PubMed] [Google Scholar]
  6. Irie A., Hunaki M., Bando K., Kawai K. Activation of alpha-amylase in urine. Clin Chim Acta. 1974 Mar 26;51(3):241–245. doi: 10.1016/0009-8981(74)90309-x. [DOI] [PubMed] [Google Scholar]
  7. Jameson L., Frey T., Zeeberg B., Dalldorf F., Caplow M. Inhibition of microtubule assembly by phosphorylation of microtubule-associated proteins. Biochemistry. 1980 May 27;19(11):2472–2479. doi: 10.1021/bi00552a027. [DOI] [PubMed] [Google Scholar]
  8. Katsushima S., Adachi H., Honda T., Sato S., Kusui T., Onishi S., Aoki E., Noguchi M., Konishi J. Cholecystokinin downregulates receptors for vasoactive intestinal peptide and secretin in rat pancreatic acini. Am J Physiol. 1990 Mar;258(3 Pt 1):G395–G403. doi: 10.1152/ajpgi.1990.258.3.G395. [DOI] [PubMed] [Google Scholar]
  9. Kelly R. B. Microtubules, membrane traffic, and cell organization. Cell. 1990 Apr 6;61(1):5–7. doi: 10.1016/0092-8674(90)90206-t. [DOI] [PubMed] [Google Scholar]
  10. Koike H., Steer M. L., Meldolesi J. Pancreatic effects of ethionine: blockade of exocytosis and appearance of crinophagy and autophagy precede cellular necrosis. Am J Physiol. 1982 Apr;242(4):G297–G307. doi: 10.1152/ajpgi.1982.242.4.G297. [DOI] [PubMed] [Google Scholar]
  11. Kumar N. Taxol-induced polymerization of purified tubulin. Mechanism of action. J Biol Chem. 1981 Oct 25;256(20):10435–10441. [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Lampel M., Kern H. F. Acute interstitial pancreatitis in the rat induced by excessive doses of a pancreatic secretagogue. Virchows Arch A Pathol Anat Histol. 1977 Mar 11;373(2):97–117. doi: 10.1007/BF00432156. [DOI] [PubMed] [Google Scholar]
  14. Lombardi B., Estes L. W., Longnecker D. S. Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol. 1975 Jun;79(3):465–480. [PMC free article] [PubMed] [Google Scholar]
  15. Matozaki T., Martinez J., Williams J. A. A new CCK analogue differentiates two functionally distinct CCK receptors in rat and mouse pancreatic acini. Am J Physiol. 1989 Oct;257(4 Pt 1):G594–G600. doi: 10.1152/ajpgi.1989.257.4.G594. [DOI] [PubMed] [Google Scholar]
  16. Miller L. J., Rosenzweig S. A., Jamieson J. D. Preparation and characterization of a probe for the cholecystokinin octapeptide receptor, N alpha (125I-desaminotyrosyl)CCK-8, and its interactions with pancreatic acini. J Biol Chem. 1981 Dec 10;256(23):12417–12423. [PubMed] [Google Scholar]
  17. Mitchell C. J., Playforth M. J., Kelleher J., McMahon M. J. Functional recovery of the exocrine pancreas after acute pancreatitis. Scand J Gastroenterol. 1983 Jan;18(1):5–8. doi: 10.3109/00365528309181549. [DOI] [PubMed] [Google Scholar]
  18. Nakanishi H., Ohyanagi H., Takeyama Y., Onoyama H., Saitoh Y., Kikuchi A., Takai Y. Mode of inhibitory action of cholecystokinin in amylase release from isolated rat pancreatic acini--inhibition of secretory process post to protein kinase C-calcium ion systems. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1314–1322. doi: 10.1016/0006-291x(88)90283-5. [DOI] [PubMed] [Google Scholar]
  19. Niederau C., Niederau M., Lüthen R., Strohmeyer G., Ferrell L. D., Grendell J. H. Pancreatic exocrine secretion in acute experimental pancreatitis. Gastroenterology. 1990 Oct;99(4):1120–1127. doi: 10.1016/0016-5085(90)90633-c. [DOI] [PubMed] [Google Scholar]
  20. Parczyk K., Haase W., Kondor-Koch C. Microtubules are involved in the secretion of proteins at the apical cell surface of the polarized epithelial cell, Madin-Darby canine kidney. J Biol Chem. 1989 Oct 5;264(28):16837–16846. [PubMed] [Google Scholar]
  21. Rowinsky E. K., Cazenave L. A., Donehower R. C. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst. 1990 Aug 1;82(15):1247–1259. doi: 10.1093/jnci/82.15.1247. [DOI] [PubMed] [Google Scholar]
  22. Saito I., Hashimoto S., Saluja A., Steer M. L., Meldolesi J. Intracellular transport of pancreatic zymogens during caerulein supramaximal stimulation. Am J Physiol. 1987 Oct;253(4 Pt 1):G517–G526. doi: 10.1152/ajpgi.1987.253.4.G517. [DOI] [PubMed] [Google Scholar]
  23. Saluja A. K., Saluja M., Printz H., Zavertnik A., Sengupta A., Steer M. L. Experimental pancreatitis is mediated by low-affinity cholecystokinin receptors that inhibit digestive enzyme secretion. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8968–8971. doi: 10.1073/pnas.86.22.8968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Saluja A., Hashimoto S., Saluja M., Powers R. E., Meldolesi J., Steer M. L. Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol. 1987 Oct;253(4 Pt 1):G508–G516. doi: 10.1152/ajpgi.1987.253.4.G508. [DOI] [PubMed] [Google Scholar]
  25. Saluja A., Saito I., Saluja M., Houlihan M. J., Powers R. E., Meldolesi J., Steer M. In vivo rat pancreatic acinar cell function during supramaximal stimulation with caerulein. Am J Physiol. 1985 Dec;249(6 Pt 1):G702–G710. doi: 10.1152/ajpgi.1985.249.6.G702. [DOI] [PubMed] [Google Scholar]
  26. Saluja A., Saluja M., Villa A., Leli U., Rutledge P., Meldolesi J., Steer M. Pancreatic duct obstruction in rabbits causes digestive zymogen and lysosomal enzyme colocalization. J Clin Invest. 1989 Oct;84(4):1260–1266. doi: 10.1172/JCI114293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sankaran H., Goldfine I. D., Bailey A., Licko V., Williams J. A. Relationship of cholecystokinin receptor binding to regulation of biological functions in pancreatic acini. Am J Physiol. 1982 Mar;242(3):G250–G257. doi: 10.1152/ajpgi.1982.242.3.G250. [DOI] [PubMed] [Google Scholar]
  28. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  29. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Stark H. A., Sharp C. M., Sutliff V. E., Martinez J., Jensen R. T., Gardner J. D. CCK-JMV-180: a peptide that distinguishes high-affinity cholecystokinin receptors from low-affinity cholecystokinin receptors. Biochim Biophys Acta. 1989 Feb 9;1010(2):145–150. doi: 10.1016/0167-4889(89)90154-7. [DOI] [PubMed] [Google Scholar]
  31. Steer M. L., Meldolesi J. The cell biology of experimental pancreatitis. N Engl J Med. 1987 Jan 15;316(3):144–150. doi: 10.1056/NEJM198701153160306. [DOI] [PubMed] [Google Scholar]
  32. Takeyama Y., Nakanishi H., Ohyanagi H., Saitoh Y., Kaibuchi K., Takai Y. Enhancement of secretagogue-induced phosphoinositide turnover and amylase secretion by bile acids in isolated rat pancreatic acini. J Clin Invest. 1986 Dec;78(6):1604–1611. doi: 10.1172/JCI112753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wani M. C., Taylor H. L., Wall M. E., Coggon P., McPhail A. T. Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Am Chem Soc. 1971 May 5;93(9):2325–2327. doi: 10.1021/ja00738a045. [DOI] [PubMed] [Google Scholar]
  34. Watanabe O., Baccino F. M., Steer M. L., Meldolesi J. Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol. 1984 Apr;246(4 Pt 1):G457–G467. doi: 10.1152/ajpgi.1984.246.4.G457. [DOI] [PubMed] [Google Scholar]
  35. Wiernik P. H., Schwartz E. L., Strauman J. J., Dutcher J. P., Lipton R. B., Paietta E. Phase I clinical and pharmacokinetic study of taxol. Cancer Res. 1987 May 1;47(9):2486–2493. [PubMed] [Google Scholar]
  36. Williams J. A., Lee M. Microtubules and pancreatic amylase release by mouse pancreas in vitro. J Cell Biol. 1976 Dec;71(3):795–806. doi: 10.1083/jcb.71.3.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamamoto H., Fukunaga K., Goto S., Tanaka E., Miyamoto E. Ca2+, calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem. 1985 Mar;44(3):759–768. doi: 10.1111/j.1471-4159.1985.tb12880.x. [DOI] [PubMed] [Google Scholar]
  38. Yamamoto H., Saitoh Y., Fukunaga K., Nishimura H., Miyamoto E. Dephosphorylation of microtubule proteins by brain protein phosphatases 1 and 2A, and its effect on microtubule assembly. J Neurochem. 1988 May;50(5):1614–1623. doi: 10.1111/j.1471-4159.1988.tb03051.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES