Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jan;89(1):273–282. doi: 10.1172/JCI115571

Cloning and characterization of the novel gene for mast cell carboxypeptidase A.

D S Reynolds 1, D S Gurley 1, K F Austen 1
PMCID: PMC442845  PMID: 1729276

Abstract

No gene for a hematopoietic cell carboxypeptidase has previously been characterized. Mast cell carboxypeptidase A (MC-CPA) is a prominent secretory granule marker of mast cell differentiation and phenotype. The 32-kb human MC-CPA gene was isolated, localized to chromosome 3, and found to contain 11 exons. No significant homology was found between the 5' flanking region of the MC-CPA gene and those of three rat pancreatic carboxypeptidase genes (carboxypeptidase A1 and A2, and carboxypeptidase B [CPB]). In contrast, the intron/exon organization of the MC-CPA gene was conserved, most closely resembling the CPB gene. MC-CPA is unique among carboxypeptidases in having a CPA-like substrate-binding pocket and enzymatic activity despite overall protein and gene structures more similar to CPB. Evolutionary tree analysis of the carboxypeptidase gene family showed that, before the mammalian species radiation, a common MC-CPA/CPB ancestor diverged by gene duplication from the lineage leading to CPA, and then underwent another gene duplication to form separate but similar gene structures for MC-CPA and CPB. MC-CPA mRNA was prominent in dispersed lung cells enriched for mast cells but was undetectable in other nontransformed populations of several lineages, demonstrating that transcription of MC-CPA, a novel carboxypeptidase gene, provides a specific molecular marker for mast cells among normal hematopoietic cell populations.

Full text

PDF
273

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson P., Caligiuri M., Ritz J., Schlossman S. F. CD3-negative natural killer cells express zeta TCR as part of a novel molecular complex. Nature. 1989 Sep 14;341(6238):159–162. doi: 10.1038/341159a0. [DOI] [PubMed] [Google Scholar]
  2. Aviv H., Leder P. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1408–1412. doi: 10.1073/pnas.69.6.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulet A. M., Erwin C. R., Rutter W. J. Cell-specific enhancers in the rat exocrine pancreas. Proc Natl Acad Sci U S A. 1986 Jun;83(11):3599–3603. doi: 10.1073/pnas.83.11.3599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradshaw R. A., Walsh K. A., Neurath H. Amino acid sequence of bovine carboxypeptidase A. Isolation and characterization of selected peptic and nagarse peptides and the complete sequence of fragment F-I. Biochemistry. 1971 Mar 16;10(6):961–972. doi: 10.1021/bi00782a006. [DOI] [PubMed] [Google Scholar]
  5. Breathnach R., Chambon P. Organization and expression of eucaryotic split genes coding for proteins. Annu Rev Biochem. 1981;50:349–383. doi: 10.1146/annurev.bi.50.070181.002025. [DOI] [PubMed] [Google Scholar]
  6. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  7. Caulfield J. P., Lewis R. A., Hein A., Austen K. F. Secretion in dissociated human pulmonary mast cells. Evidence for solubilization of granule contents before discharge. J Cell Biol. 1980 May;85(2):299–312. doi: 10.1083/jcb.85.2.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chang C., Meyerowitz E. M. Molecular cloning and DNA sequence of the Arabidopsis thaliana alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1986 Mar;83(5):1408–1412. doi: 10.1073/pnas.83.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  10. Clauser E., Gardell S. J., Craik C. S., MacDonald R. J., Rutter W. J. Structural characterization of the rat carboxypeptidase A1 and B genes. Comparative analysis of the rat carboxypeptidase gene family. J Biol Chem. 1988 Nov 25;263(33):17837–17845. [PubMed] [Google Scholar]
  11. Cole K. R., Kumar S., Trong H. L., Woodbury R. G., Walsh K. A., Neurath H. Rat mast cell carboxypeptidase: amino acid sequence and evidence of enzyme activity within mast cell granules. Biochemistry. 1991 Jan 22;30(3):648–655. doi: 10.1021/bi00217a009. [DOI] [PubMed] [Google Scholar]
  12. Craik C. S., Sprang S., Fletterick R., Rutter W. J. Intron-exon splice junctions map at protein surfaces. Nature. 1982 Sep 9;299(5879):180–182. doi: 10.1038/299180a0. [DOI] [PubMed] [Google Scholar]
  13. Czop J. K., Kay J. Isolation and characterization of beta-glucan receptors on human mononuclear phagocytes. J Exp Med. 1991 Jun 1;173(6):1511–1520. doi: 10.1084/jem.173.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Everitt M. T., Neurath H. Rat peritoneal mast cell carboxypeptidase: localization, purification, and enzymatic properties. FEBS Lett. 1980 Feb 11;110(2):292–296. doi: 10.1016/0014-5793(80)80095-0. [DOI] [PubMed] [Google Scholar]
  15. Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  16. Fitch W. M., Farris J. S. Evolutionary trees with minimum nucleotide replacements from amino acid sequences. J Mol Evol. 1974;3(4):263–278. doi: 10.1007/BF01796042. [DOI] [PubMed] [Google Scholar]
  17. Furley A. J., Reeves B. R., Mizutani S., Altass L. J., Watt S. M., Jacob M. C., van den Elsen P., Terhorst C., Greaves M. F. Divergent molecular phenotypes of KG1 and KG1a myeloid cell lines. Blood. 1986 Nov;68(5):1101–1107. [PubMed] [Google Scholar]
  18. Gardell S. J., Craik C. S., Clauser E., Goldsmith E. J., Stewart C. B., Graf M., Rutter W. J. A novel rat carboxypeptidase, CPA2: characterization, molecular cloning, and evolutionary implications on substrate specificity in the carboxypeptidase gene family. J Biol Chem. 1988 Nov 25;263(33):17828–17836. [PubMed] [Google Scholar]
  19. Gilbert W., Marchionni M., McKnight G. On the antiquity of introns. Cell. 1986 Jul 18;46(2):151–153. doi: 10.1016/0092-8674(86)90730-0. [DOI] [PubMed] [Google Scholar]
  20. Goldstein S. M., Kaempfer C. E., Kealey J. T., Wintroub B. U. Human mast cell carboxypeptidase. Purification and characterization. J Clin Invest. 1989 May;83(5):1630–1636. doi: 10.1172/JCI114061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goldstein S. M., Kaempfer C. E., Proud D., Schwartz L. B., Irani A. M., Wintroub B. U. Detection and partial characterization of a human mast cell carboxypeptidase. J Immunol. 1987 Oct 15;139(8):2724–2729. [PubMed] [Google Scholar]
  22. Hohn P. A., Popescu N. C., Hanson R. D., Salvesen G., Ley T. J. Genomic organization and chromosomal localization of the human cathepsin G gene. J Biol Chem. 1989 Aug 15;264(23):13412–13419. [PubMed] [Google Scholar]
  23. Irani A. A., Schechter N. M., Craig S. S., DeBlois G., Schwartz L. B. Two types of human mast cells that have distinct neutral protease compositions. Proc Natl Acad Sci U S A. 1986 Jun;83(12):4464–4468. doi: 10.1073/pnas.83.12.4464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kokkonen J. O., Kovanen P. T. Proteolytic enzymes of mast cell granules degrade low density lipoproteins and promote their granule-mediated uptake by macrophages in vitro. J Biol Chem. 1989 Jun 25;264(18):10749–10755. [PubMed] [Google Scholar]
  25. Kokkonen J. O., Vartiainen M., Kovanen P. T. Low density lipoprotein degradation by secretory granules of rat mast cells. Sequential degradation of apolipoprotein B by granule chymase and carboxypeptidase A. J Biol Chem. 1986 Dec 5;261(34):16067–16072. [PubMed] [Google Scholar]
  26. Komatsu N., Suda T., Moroi M., Tokuyama N., Sakata Y., Okada M., Nishida T., Hirai Y., Sato T., Fuse A. Growth and differentiation of a human megakaryoblastic cell line, CMK. Blood. 1989 Jul;74(1):42–48. [PubMed] [Google Scholar]
  27. Lam B. K., Owen W. F., Jr, Austen K. F., Soberman R. J. The identification of a distinct export step following the biosynthesis of leukotriene C4 by human eosinophils. J Biol Chem. 1989 Aug 5;264(22):12885–12889. [PubMed] [Google Scholar]
  28. Leglise M. C., Dent G. A., Ayscue L. H., Ross D. W. Leukemic cell maturation: phenotypic variability and oncogene expression in HL60 cells: a review. Blood Cells. 1988;13(3):319–337. [PubMed] [Google Scholar]
  29. Maizel J. V., Jr, Lenk R. P. Enhanced graphic matrix analysis of nucleic acid and protein sequences. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7665–7669. doi: 10.1073/pnas.78.12.7665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mount S. M. A catalogue of splice junction sequences. Nucleic Acids Res. 1982 Jan 22;10(2):459–472. doi: 10.1093/nar/10.2.459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Narahashi Y. The amino acid sequence of zinc-carboxypeptidase from Streptomyces griseus. J Biochem. 1990 Jun;107(6):879–886. doi: 10.1093/oxfordjournals.jbchem.a123142. [DOI] [PubMed] [Google Scholar]
  32. Narahashi Y., Yoda K. Purification and some properties of a new metallo carboxypeptidase of Streptomyces griseus K-1. J Biochem. 1979 Sep;86(3):683–694. doi: 10.1093/oxfordjournals.jbchem.a132572. [DOI] [PubMed] [Google Scholar]
  33. Pearson W. R., Lipman D. J. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2444–2448. doi: 10.1073/pnas.85.8.2444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Perler F., Efstratiadis A., Lomedico P., Gilbert W., Kolodner R., Dodgson J. The evolution of genes: the chicken preproinsulin gene. Cell. 1980 Jun;20(2):555–566. doi: 10.1016/0092-8674(80)90641-8. [DOI] [PubMed] [Google Scholar]
  35. Rees D. C., Lewis M., Lipscomb W. N. Refined crystal structure of carboxypeptidase A at 1.54 A resolution. J Mol Biol. 1983 Aug 5;168(2):367–387. doi: 10.1016/s0022-2836(83)80024-2. [DOI] [PubMed] [Google Scholar]
  36. Reynolds D. S., Gurley D. S., Austen K. F., Serafin W. E. Cloning of the cDNA and gene of mouse mast cell protease-6. Transcription by progenitor mast cells and mast cells of the connective tissue subclass. J Biol Chem. 1991 Feb 25;266(6):3847–3853. [PubMed] [Google Scholar]
  37. Reynolds D. S., Gurley D. S., Stevens R. L., Sugarbaker D. J., Austen K. F., Serafin W. E. Cloning of cDNAs that encode human mast cell carboxypeptidase A, and comparison of the protein with mouse mast cell carboxypeptidase A and rat pancreatic carboxypeptidases. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9480–9484. doi: 10.1073/pnas.86.23.9480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Reynolds D. S., Serafin W. E., Faller D. V., Wall D. A., Abbas A. K., Dvorak A. M., Austen K. F., Stevens R. L. Immortalization of murine connective tissue-type mast cells at multiple stages of their differentiation by coculture of splenocytes with fibroblasts that produce Kirsten sarcoma virus. J Biol Chem. 1988 Sep 5;263(25):12783–12791. [PubMed] [Google Scholar]
  39. Reynolds D. S., Stevens R. L., Gurley D. S., Lane W. S., Austen K. F., Serafin W. E. Isolation and molecular cloning of mast cell carboxypeptidase A. A novel member of the carboxypeptidase gene family. J Biol Chem. 1989 Nov 25;264(33):20094–20099. [PubMed] [Google Scholar]
  40. Sarid J., Benfey P. N., Leder P. The mast cell-specific expression of a protease gene, RMCP II, is regulated by an enhancer element that binds specifically to mast cell trans-acting factors. J Biol Chem. 1989 Jan 15;264(2):1022–1026. [PubMed] [Google Scholar]
  41. Schechter N. M., Irani A. M., Sprows J. L., Abernethy J., Wintroub B., Schwartz L. B. Identification of a cathepsin G-like proteinase in the MCTC type of human mast cell. J Immunol. 1990 Oct 15;145(8):2652–2661. [PubMed] [Google Scholar]
  42. Schmid M. F., Herriott J. R. Structure of carboxypeptidase B at 2-8 A resolution. J Mol Biol. 1976 May 5;103(1):175–190. doi: 10.1016/0022-2836(76)90058-9. [DOI] [PubMed] [Google Scholar]
  43. Schwartz L. B., Irani A. M., Roller K., Castells M. C., Schechter N. M. Quantitation of histamine, tryptase, and chymase in dispersed human T and TC mast cells. J Immunol. 1987 Apr 15;138(8):2611–2615. [PubMed] [Google Scholar]
  44. Serafin W. E., Dayton E. T., Gravallese P. M., Austen K. F., Stevens R. L. Carboxypeptidase A in mouse mast cells. Identification, characterization, and use as a differentiation marker. J Immunol. 1987 Dec 1;139(11):3771–3776. [PubMed] [Google Scholar]
  45. Serafin W. E., Sullivan T. P., Conder G. A., Ebrahimi A., Marcham P., Johnson S. S., Austen K. F., Reynolds D. S. Cloning of the cDNA and gene for mouse mast cell protease 4. Demonstration of its late transcription in mast cell subclasses and analysis of its homology to subclass-specific neutral proteases of the mouse and rat. J Biol Chem. 1991 Jan 25;266(3):1934–1941. [PubMed] [Google Scholar]
  46. Shapiro M. B., Senapathy P. RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression. Nucleic Acids Res. 1987 Sep 11;15(17):7155–7174. doi: 10.1093/nar/15.17.7155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Titani K., Ericsson L. H., Walsh K. A., Neurath H. Amino-acid sequence of bovine carboxypeptidase B. Proc Natl Acad Sci U S A. 1975 May;72(5):1666–1670. doi: 10.1073/pnas.72.5.1666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Tsonis P. A., Manes T. Rapid phage DNA isolation without the use of enzymes. Biotechniques. 1988 Nov-Dec;6(10):950–951. [PubMed] [Google Scholar]
  50. Vanderslice P., Ballinger S. M., Tam E. K., Goldstein S. M., Craik C. S., Caughey G. H. Human mast cell tryptase: multiple cDNAs and genes reveal a multigene serine protease family. Proc Natl Acad Sci U S A. 1990 May;87(10):3811–3815. doi: 10.1073/pnas.87.10.3811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Weidner N., Austen K. F. Ultrastructural and immunohistochemical characterization of normal mast cells at multiple body sites. J Invest Dermatol. 1991 Mar;96(3 Suppl):26S-30S; discussion 30S-31S, 60S-65S. doi: 10.1111/1523-1747.ep12468966. [DOI] [PubMed] [Google Scholar]
  52. Wong W. W., Klickstein L. B., Smith J. A., Weis J. H., Fearon D. T. Identification of a partial cDNA clone for the human receptor for complement fragments C3b/C4b. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7711–7715. doi: 10.1073/pnas.82.22.7711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES