Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Mar;89(3):766–773. doi: 10.1172/JCI115654

Plasma levels of elastase-specific fibrinopeptides correlate with proteinase inhibitor phenotype. Evidence for increased elastase activity in subjects with homozygous and heterozygous deficiency of alpha 1-proteinase inhibitor.

J I Weitz 1, E K Silverman 1, B Thong 1, E J Campbell 1
PMCID: PMC442920  PMID: 1541671

Abstract

There is indirect evidence that unopposed human neutrophil elastase (HNE) is responsible for emphysema in patients with alpha 1-proteinase inhibitor (Pi) deficiency. To directly explore this possibility, we developed an assay for fibrinopeptide A alpha 1-21 and its degradation products and used it to measure HNE activity in 128 subjects of known Pi phenotype. The mean elastase-specific fibrinopeptide (ESF) level in 49 deficient PiZ individuals is significantly higher than that in 56 PiMZ heterozygotes (4.5 and 1.5 nM, respectively; P less than 0.01), while the mean ESF value in heterozygotes is significantly elevated over that in 23 normal PiM subjects (1.5 and 0.6 nM, respectively; P less than 0.01), consistent with increased HNE activity in those deficient in the major regulator of the enzyme. These results are not due to differences in smoking history because after correction for pack-years of smoking, ESF values in PiZ subjects are fourfold higher than those in PiMZ individuals (P = 0.005), while the ESF levels in heterozygotes are threefold higher than those in PiM subjects (P = 0.02). In addition, this analysis suggests that cigarette smoking and alpha 1-proteinase inhibitor deficiency have additive effects on ESF levels thereby explaining why PiZ and some PiMZ individuals are at especially high risk for the development of lung disease if they smoke. Finally, the observation that ESF levels in nonsmoking PiZ subjects are inversely related to the percent of predicted forced expiratory volume in 1 s (FEV 1%) provides direct support for the concept that unregulated HNE activity causes alveolar septal destruction in patients with alpha 1-proteinase inhibitor deficiency.

Full text

PDF
766

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Harley R. A., Talamo R. C. A new method for determination of alpha-1-antitrypsin phenotypes using isoelectric focusing on polyacrylamide gel slabs. Am J Clin Pathol. 1974 Dec;62(6):732–739. doi: 10.1093/ajcp/62.6.732. [DOI] [PubMed] [Google Scholar]
  2. Barbosa J., Seal U. S., Doe R. P. Effects of anabolic steroids on haptoglobin, orosomucoid, plasminogen, fibrinogen, transferrin, ceruloplasmin, alpha-1-antitrypsin, beta-glucuronidase and total serum proteins. J Clin Endocrinol Metab. 1971 Sep;33(3):388–398. doi: 10.1210/jcem-33-3-388. [DOI] [PubMed] [Google Scholar]
  3. Beatty K., Bieth J., Travis J. Kinetics of association of serine proteinases with native and oxidized alpha-1-proteinase inhibitor and alpha-1-antichymotrypsin. J Biol Chem. 1980 May 10;255(9):3931–3934. [PubMed] [Google Scholar]
  4. Beatty K., Matheson N., Travis J. Kinetic and chemical evidence for the inability of oxidized alpha 1-proteinase inhibitor to protect lung elastin from elastolytic degradation. Hoppe Seylers Z Physiol Chem. 1984 Jul;365(7):731–736. doi: 10.1515/bchm2.1984.365.2.731. [DOI] [PubMed] [Google Scholar]
  5. Campbell E. J., Campbell M. A. Pericellular proteolysis by neutrophils in the presence of proteinase inhibitors: effects of substrate opsonization. J Cell Biol. 1988 Mar;106(3):667–676. doi: 10.1083/jcb.106.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Campbell E. J. Preventive therapy of emphysema. Lessons from the elastase model. Am Rev Respir Dis. 1986 Sep;134(3):435–437. doi: 10.1164/arrd.1986.134.3.435. [DOI] [PubMed] [Google Scholar]
  7. Campbell E. J., Senior R. M., McDonald J. A., Cox D. L. Proteolysis by neutrophils. Relative importance of cell-substrate contact and oxidative inactivation of proteinase inhibitors in vitro. J Clin Invest. 1982 Oct;70(4):845–852. doi: 10.1172/JCI110681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Campbell E. J., Silverman E. K., Campbell M. A. Elastase and cathepsin G of human monocytes. Quantification of cellular content, release in response to stimuli, and heterogeneity in elastase-mediated proteolytic activity. J Immunol. 1989 Nov 1;143(9):2961–2968. [PubMed] [Google Scholar]
  9. Canfield R. E., Dean J., Nossel H. L., Butler V. P., Jr, Wilner G. D. Reactivity of fibrinogen and fibrinopeptide A containing fibrinogen fragments with antisera to fibrinopeptide A. Biochemistry. 1976 Mar 23;15(6):1203–1209. doi: 10.1021/bi00651a004. [DOI] [PubMed] [Google Scholar]
  10. Carp H., Janoff A. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis. 1978 Sep;118(3):617–621. doi: 10.1164/arrd.1978.118.3.617. [DOI] [PubMed] [Google Scholar]
  11. Carp H., Janoff A. Possible mechanisms of emphysema in smokers. In vitro suppression of serum elastase-inhibitory capacity by fresh cigarette smoke and its prevention by antioxidants. Am Rev Respir Dis. 1978 Sep;118(3):617–621. doi: 10.1164/arrd.1978.118.3.617. [DOI] [PubMed] [Google Scholar]
  12. Chapman H. A., Jr, Stone O. L. Comparison of live human neutrophil and alveolar macrophage elastolytic activity in vitro. Relative resistance of macrophage elastolytic activity to serum and alveolar proteinase inhibitors. J Clin Invest. 1984 Nov;74(5):1693–1700. doi: 10.1172/JCI111586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cohen A. B., James H. L. Reduction of the elastase inhibitory capacity of alpha 1-antitrypsin by peroxides in cigarette smoke: an analysis of brands and filters. Am Rev Respir Dis. 1982 Jul;126(1):25–30. doi: 10.1164/arrd.1982.126.1.25. [DOI] [PubMed] [Google Scholar]
  14. Ferris B. G. Epidemiology Standardization Project (American Thoracic Society). Am Rev Respir Dis. 1978 Dec;118(6 Pt 2):1–120. [PubMed] [Google Scholar]
  15. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  16. Hayashi R. Carboxypeptidase Y. Methods Enzymol. 1976;45:568–587. doi: 10.1016/s0076-6879(76)45051-6. [DOI] [PubMed] [Google Scholar]
  17. Hunninghake G. W., Crystal R. G. Cigarette smoking and lung destruction. Accumulation of neutrophils in the lungs of cigarette smokers. Am Rev Respir Dis. 1983 Nov;128(5):833–838. doi: 10.1164/arrd.1983.128.5.833. [DOI] [PubMed] [Google Scholar]
  18. Janoff A. Elastase in tissue injury. Annu Rev Med. 1985;36:207–216. doi: 10.1146/annurev.me.36.020185.001231. [DOI] [PubMed] [Google Scholar]
  19. Janoff A. Elastases and emphysema. Current assessment of the protease-antiprotease hypothesis. Am Rev Respir Dis. 1985 Aug;132(2):417–433. doi: 10.1164/arrd.1985.132.2.417. [DOI] [PubMed] [Google Scholar]
  20. Janoff A., Sloan B., Weinbaum G., Damiano V., Sandhaus R. A., Elias J., Kimbel P. Experimental emphysema induced with purified human neutrophil elastase: tissue localization of the instilled protease. Am Rev Respir Dis. 1977 Mar;115(3):461–478. doi: 10.1164/arrd.1977.115.3.461. [DOI] [PubMed] [Google Scholar]
  21. Janus E. D. Alpha 1-antitrypsin Pi types in COPD patients. Chest. 1988 Aug;94(2):446–447. doi: 10.1378/chest.94.2.446. [DOI] [PubMed] [Google Scholar]
  22. La Gamma K. S., Nossel H. L. The stability of fibrinopeptide B immunoreactivity in blood. Thromb Res. 1978 Mar;12(3):447–454. doi: 10.1016/0049-3848(78)90315-8. [DOI] [PubMed] [Google Scholar]
  23. Lieberman J. Heterozygous and homozygous alpha-antitrypsin deficiency in patients with pulmonary emphysema. N Engl J Med. 1969 Aug 7;281(6):279–284. doi: 10.1056/NEJM196908072810601. [DOI] [PubMed] [Google Scholar]
  24. Lieberman J., Winter B., Sastre A. Alpha 1-antitrypsin Pi-types in 965 COPD patients. Chest. 1986 Mar;89(3):370–373. doi: 10.1378/chest.89.3.370. [DOI] [PubMed] [Google Scholar]
  25. MacNee W., Wiggs B., Belzberg A. S., Hogg J. C. The effect of cigarette smoking on neutrophil kinetics in human lungs. N Engl J Med. 1989 Oct 5;321(14):924–928. doi: 10.1056/NEJM198910053211402. [DOI] [PubMed] [Google Scholar]
  26. Marglin A., Merrifield R. B. Chemical synthesis of peptides and proteins. Annu Rev Biochem. 1970;39:841–866. doi: 10.1146/annurev.bi.39.070170.004205. [DOI] [PubMed] [Google Scholar]
  27. Nossel H. L., Butler V. P., Jr, Wilner G. D., Canfield R. E., Harfenist E. J. Specificity of antisera to human fibrinopeptide A used in clinical fibrinopeptide A assays. Thromb Haemost. 1976 Feb 29;35(1):101–109. [PubMed] [Google Scholar]
  28. Nossel H. L., Yudelman I., Canfield R. E., Butler V. P., Jr, Spanondis K., Wilner G. D., Qureshi G. D. Measurement of fibrinopeptide A in human blood. J Clin Invest. 1974 Jul;54(1):43–53. doi: 10.1172/JCI107749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Pierce J. A., Eradio B. G. Improved identification of antitrypsin phenotypes through isoelectric focusing with dithioerythritol. J Lab Clin Med. 1979 Dec;94(6):826–831. [PubMed] [Google Scholar]
  30. Powers J. C., Gupton B. F., Harley A. D., Nishino N., Whitley R. J. Specificity of porcine pancreatic elastase, human leukocyte elastase and cathepsin G. Inhibition with peptide chloromethyl ketones. Biochim Biophys Acta. 1977 Nov 23;485(1):156–166. doi: 10.1016/0005-2744(77)90203-0. [DOI] [PubMed] [Google Scholar]
  31. Rice W. G., Weiss S. J. Regulation of proteolysis at the neutrophil-substrate interface by secretory leukoprotease inhibitor. Science. 1990 Jul 13;249(4965):178–181. doi: 10.1126/science.2371565. [DOI] [PubMed] [Google Scholar]
  32. Schalkwijk J., van den Berg W. B., van de Putte L. B., Joosten L. A. Elastase secreted by activated polymorphonuclear leucocytes causes chondrocyte damage and matrix degradation in intact articular cartilage: escape from inactivation by alpha-1-proteinase inhibitor. Br J Exp Pathol. 1987 Feb;68(1):81–88. [PMC free article] [PubMed] [Google Scholar]
  33. Senior R. M., Skogen W. F., Griffin G. L., Wilner G. D. Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J Clin Invest. 1986 Mar;77(3):1014–1019. doi: 10.1172/JCI112353. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Senior R. M., Tegner H., Kuhn C., Ohlsson K., Starcher B. C., Pierce J. A. The induction of pulmonary emphysema with human leukocyte elastase. Am Rev Respir Dis. 1977 Sep;116(3):469–475. doi: 10.1164/arrd.1977.116.3.469. [DOI] [PubMed] [Google Scholar]
  35. Silverman E. K., Miletich J. P., Pierce J. A., Sherman L. A., Endicott S. K., Broze G. J., Jr, Campbell E. J. Alpha-1-antitrypsin deficiency. High prevalence in the St. Louis area determined by direct population screening. Am Rev Respir Dis. 1989 Oct;140(4):961–966. doi: 10.1164/ajrccm/140.4.961. [DOI] [PubMed] [Google Scholar]
  36. Silverman E. K., Pierce J. A., Province M. A., Rao D. C., Campbell E. J. Variability of pulmonary function in alpha-1-antitrypsin deficiency: clinical correlates. Ann Intern Med. 1989 Dec 15;111(12):982–991. doi: 10.7326/0003-4819-111-12-982. [DOI] [PubMed] [Google Scholar]
  37. Silverman E. K., Province M. A., Rao D. C., Pierce J. A., Campbell E. J. A family study of the variability of pulmonary function in alpha 1-antitrypsin deficiency. Quantitative phenotypes. Am Rev Respir Dis. 1990 Nov;142(5):1015–1021. doi: 10.1164/ajrccm/142.5.1015. [DOI] [PubMed] [Google Scholar]
  38. Travis J., Salvesen G. S. Human plasma proteinase inhibitors. Annu Rev Biochem. 1983;52:655–709. doi: 10.1146/annurev.bi.52.070183.003255. [DOI] [PubMed] [Google Scholar]
  39. Weiss S. J., Curnutte J. T., Regiani S. Neutrophil-mediated solubilization of the subendothelial matrix: oxidative and nonoxidative mechanisms of proteolysis used by normal and chronic granulomatous disease phagocytes. J Immunol. 1986 Jan;136(2):636–641. [PubMed] [Google Scholar]
  40. Weiss S. J., Regiani S. Neutrophils degrade subendothelial matrices in the presence of alpha-1-proteinase inhibitor. Cooperative use of lysosomal proteinases and oxygen metabolites. J Clin Invest. 1984 May;73(5):1297–1303. doi: 10.1172/JCI111332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Weitz J. I., Crowley K. A., Landman S. L., Lipman B. I., Yu J. Increased neutrophil elastase activity in cigarette smokers. Ann Intern Med. 1987 Nov;107(5):680–682. doi: 10.7326/0003-4819-107-5-680. [DOI] [PubMed] [Google Scholar]
  42. Weitz J. I., Cruickshank M. K., Thong B., Leslie B., Levine M. N., Ginsberg J., Eckhardt T. Human tissue-type plasminogen activator releases fibrinopeptides A and B from fibrinogen. J Clin Invest. 1988 Nov;82(5):1700–1707. doi: 10.1172/JCI113783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weitz J. I., Huang A. J., Landman S. L., Nicholson S. C., Silverstein S. C. Elastase-mediated fibrinogenolysis by chemoattractant-stimulated neutrophils occurs in the presence of physiologic concentrations of antiproteinases. J Exp Med. 1987 Dec 1;166(6):1836–1850. doi: 10.1084/jem.166.6.1836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Weitz J. I., Koehn J. A., Canfield R. E., Landman S. L., Friedman R. Development of a radioimmunoassay for the fibrinogen-derived peptide B beta 1-42. Blood. 1986 Apr;67(4):1014–1022. [PubMed] [Google Scholar]
  45. Weitz J. I., Landman S. L., Crowley K. A., Birken S., Morgan F. J. Development of an assay for in vivo human neutrophil elastase activity. Increased elastase activity in patients with alpha 1-proteinase inhibitor deficiency. J Clin Invest. 1986 Jul;78(1):155–162. doi: 10.1172/JCI112545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wilner G. D., Nossel H. L., Canfield R. E., Butler V. P., Jr Immunochemical studies of human fibrinopeptide A using synthetic peptide homologues. Biochemistry. 1976 Mar 23;15(6):1209–1213. doi: 10.1021/bi00651a005. [DOI] [PubMed] [Google Scholar]
  47. Wright S. D., Weitz J. I., Huang A. J., Levin S. M., Silverstein S. C., Loike J. D. Complement receptor type three (CD11b/CD18) of human polymorphonuclear leukocytes recognizes fibrinogen. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7734–7738. doi: 10.1073/pnas.85.20.7734. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES