Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Mar;89(3):947–953. doi: 10.1172/JCI115676

Effect of hydration status on cerebral blood flow and cerebrospinal fluid lactic acidosis in rabbits with experimental meningitis.

J H Tureen 1, M G Täuber 1, M A Sande 1
PMCID: PMC442942  PMID: 1541682

Abstract

The effects of hydration status on cerebral blood flow (CBF) and development of cerebrospinal fluid (CSF) lactic acidosis were evaluated in rabbits with experimental pneumococcal meningitis. As loss of cerebrovascular autoregulation has been previously demonstrated in this model, we reasoned that compromise of intravascular volume might severely affect cerebral perfusion. Furthermore, as acute exacerbation of the inflammatory response in the subarachnoid space has been observed after antibiotic therapy, animals were studied not only while meningitis evolved, but also 4-6 h after treatment with antibiotics to determine whether there would also be an effect on CBF. To produce different levels of hydration, animals were given either 50 ml/kg per 24 h of normal saline ("low fluid") or 150 ml/kg 24 h ("high fluid"). After 16 h of infection, rabbits that were given the lower fluid regimen had lower mean arterial blood pressure (MABP), lower CBF, and higher CSF lactate compared with animals that received the higher fluid regimen. In the first 4-6 h after antibiotic administration, low fluid rabbits had a significant decrease in MABP and CBF compared with, and a significantly greater increase in CSF lactate concentration than, high fluid rabbits. This study suggests that intravascular volume status may be a critical variable in determining CBF and therefore the degree of cerebral ischemia in meningitis.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen N. E., Gyring J., Hansen A. J., Laursen H., Siesjö B. K. Brain acidosis in experimental pneumococcal meningitis. J Cereb Blood Flow Metab. 1989 Jun;9(3):381–387. doi: 10.1038/jcbfm.1989.57. [DOI] [PubMed] [Google Scholar]
  2. Ashwal S., Stringer W., Tomasi L., Schneider S., Thompson J., Perkin R. Cerebral blood flow and carbon dioxide reactivity in children with bacterial meningitis. J Pediatr. 1990 Oct;117(4):523–530. doi: 10.1016/s0022-3476(05)80683-3. [DOI] [PubMed] [Google Scholar]
  3. Brook I., Bricknell K. S., Overturf G. D., Finegold S. M. Measurement of lactic acid in cerebrospinal fluid of patients with infections of the central nervous system. J Infect Dis. 1978 Apr;137(4):384–390. doi: 10.1093/infdis/137.4.384. [DOI] [PubMed] [Google Scholar]
  4. Dacey R. G., Sande M. A. Effect of probenecid on cerebrospinal fluid concentrations of penicillin and cephalosporin derivatives. Antimicrob Agents Chemother. 1974 Oct;6(4):437–441. doi: 10.1128/aac.6.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feigin R. D., Stechenberg B. W., Chang M. J., Dunkle L. M., Wong M. L., Palkes H., Dodge P. R., Davis H. Prospective evaluation of treatment of Hemophilus influenzae meningitis. J Pediatr. 1976 Apr;88(4 Pt 1):542–548. doi: 10.1016/s0022-3476(76)80002-9. [DOI] [PubMed] [Google Scholar]
  6. Feldman W. E., Ginsburg C. M., McCracken G. H., Jr, Allen D., Ahmann P., Graham J., Graham L. Relation of concentrations of Haemophilus influenzae type b in cerebrospinal fluid to late sequelae of patients with meningitis. J Pediatr. 1982 Feb;100(2):209–212. doi: 10.1016/s0022-3476(82)80636-7. [DOI] [PubMed] [Google Scholar]
  7. Goitein K. J., Tamir I. Cerebral perfusion pressure in central nervous system infections of infancy and childhood. J Pediatr. 1983 Jul;103(1):40–43. doi: 10.1016/s0022-3476(83)80772-0. [DOI] [PubMed] [Google Scholar]
  8. Grubb R. L., Jr, Raichle M. E., Eichling J. O., Ter-Pogossian M. M. The effects of changes in PaCO2 on cerebral blood volume, blood flow, and vascular mean transit time. Stroke. 1974 Sep-Oct;5(5):630–639. doi: 10.1161/01.str.5.5.630. [DOI] [PubMed] [Google Scholar]
  9. Herson V. C., Todd J. K. Prediction of morbidity in Hemophilus influenzae meningitis. Pediatrics. 1977 Jan;59(1):35–39. [PubMed] [Google Scholar]
  10. Heymann M. A., Payne B. D., Hoffman J. I., Rudolph A. M. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis. 1977 Jul-Aug;20(1):55–79. doi: 10.1016/s0033-0620(77)80005-4. [DOI] [PubMed] [Google Scholar]
  11. Kaplan S. L., Feigin R. D. The syndrome of inappropriate secretion of antidiuretic hormone in children with bacterial meningitis. J Pediatr. 1978 May;92(5):758–761. doi: 10.1016/s0022-3476(78)80144-9. [DOI] [PubMed] [Google Scholar]
  12. MANGOS J. A., LOBECK C. C. STUDIES OF SUSTAINED HYPONATREMIA DUE TO CENTRAL NERVOUS SYSTEM INFECTION. Pediatrics. 1964 Oct;34:503–510. [PubMed] [Google Scholar]
  13. Mustafa M. M., Lebel M. H., Ramilo O., Olsen K. D., Reisch J. S., Beutler B., McCracken G. H., Jr Correlation of interleukin-1 beta and cachectin concentrations in cerebrospinal fluid and outcome from bacterial meningitis. J Pediatr. 1989 Aug;115(2):208–213. doi: 10.1016/s0022-3476(89)80067-8. [DOI] [PubMed] [Google Scholar]
  14. Mustafa M. M., Ramilo O., Olsen K. D., Franklin P. S., Hansen E. J., Beutler B., McCracken G. H., Jr Tumor necrosis factor in mediating experimental Haemophilus influenzae type B meningitis. J Clin Invest. 1989 Oct;84(4):1253–1259. doi: 10.1172/JCI114292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Odio C. M., Faingezicht I., Paris M., Nassar M., Baltodano A., Rogers J., Sáez-Llorens X., Olsen K. D., McCracken G. H., Jr The beneficial effects of early dexamethasone administration in infants and children with bacterial meningitis. N Engl J Med. 1991 May 30;324(22):1525–1531. doi: 10.1056/NEJM199105303242201. [DOI] [PubMed] [Google Scholar]
  16. PETERSDORF R. G., SWARNER D. M., GARCIA M. Studies on the pathogenesis of meningitis. III. Relationship of phagocytosis to the fall in cerebrospinal fluid sugar in experimental pneumococcal meningitis. J Lab Clin Med. 1963 May;61:745–754. [PubMed] [Google Scholar]
  17. Paulson O. B., Brodersen P., Hansen E. L., Kristensen H. S. Regional cerebral blood flow, cerebral metabolic rate of oxygen, and cerebrospinal fluid acid-base variables in patients with acute meningitis and with acute encephalitis. Acta Med Scand. 1974 Sep;196(3):191–198. doi: 10.1111/j.0954-6820.1974.tb00994.x. [DOI] [PubMed] [Google Scholar]
  18. Pfister H. W., Koedel U., Haberl R. L., Dirnagl U., Feiden W., Ruckdeschel G., Einhäupl K. M. Microvascular changes during the early phase of experimental bacterial meningitis. J Cereb Blood Flow Metab. 1990 Nov;10(6):914–922. doi: 10.1038/jcbfm.1990.148. [DOI] [PubMed] [Google Scholar]
  19. Powell K. R., Sugarman L. I., Eskenazi A. E., Woodin K. A., Kays M. A., McCormick K. L., Miller M. E., Sladek C. D. Normalization of plasma arginine vasopressin concentrations when children with meningitis are given maintenance plus replacement fluid therapy. J Pediatr. 1990 Oct;117(4):515–522. doi: 10.1016/s0022-3476(05)80682-1. [DOI] [PubMed] [Google Scholar]
  20. Robinson J. A., Klondnycky M. L., Loeb H. S., Racic M. R., Gunnar R. M. Endotoxin, prekallikrein, complement and systemic vascular resistance. Sequential measurements in man. Am J Med. 1975 Jul;59(1):61–67. doi: 10.1016/0002-9343(75)90322-8. [DOI] [PubMed] [Google Scholar]
  21. Tredget E. E., Yu Y. M., Zhong S., Burini R., Okusawa S., Gelfand J. A., Dinarello C. A., Young V. R., Burke J. F. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits. Am J Physiol. 1988 Dec;255(6 Pt 1):E760–E768. doi: 10.1152/ajpendo.1988.255.6.E760. [DOI] [PubMed] [Google Scholar]
  22. Tuomanen E., Liu H., Hengstler B., Zak O., Tomasz A. The induction of meningeal inflammation by components of the pneumococcal cell wall. J Infect Dis. 1985 May;151(5):859–868. doi: 10.1093/infdis/151.5.859. [DOI] [PubMed] [Google Scholar]
  23. Tuomanen E., Tomasz A., Hengstler B., Zak O. The relative role of bacterial cell wall and capsule in the induction of inflammation in pneumococcal meningitis. J Infect Dis. 1985 Mar;151(3):535–540. doi: 10.1093/infdis/151.3.535. [DOI] [PubMed] [Google Scholar]
  24. Tureen J. H., Dworkin R. J., Kennedy S. L., Sachdeva M., Sande M. A. Loss of cerebrovascular autoregulation in experimental meningitis in rabbits. J Clin Invest. 1990 Feb;85(2):577–581. doi: 10.1172/JCI114475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Täuber M. G., Borschberg U., Sande M. A. Influence of granulocytes on brain edema, intracranial pressure, and cerebrospinal fluid concentrations of lactate and protein in experimental meningitis. J Infect Dis. 1988 Mar;157(3):456–464. doi: 10.1093/infdis/157.3.456. [DOI] [PubMed] [Google Scholar]
  26. Täuber M. G., Burroughs M., Niemöller U. M., Kuster H., Borschberg U., Tuomanen E. Differences of pathophysiology in experimental meningitis caused by three strains of Streptococcus pneumoniae. J Infect Dis. 1991 Apr;163(4):806–811. doi: 10.1093/infdis/163.4.806. [DOI] [PubMed] [Google Scholar]
  27. Täuber M. G., Shibl A. M., Hackbarth C. J., Larrick J. W., Sande M. A. Antibiotic therapy, endotoxin concentration in cerebrospinal fluid, and brain edema in experimental Escherichia coli meningitis in rabbits. J Infect Dis. 1987 Sep;156(3):456–462. doi: 10.1093/infdis/156.3.456. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES