Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Mar;89(3):968–973. doi: 10.1172/JCI115679

Coenzyme A sequestration in rat hearts oxidizing ketone bodies.

R R Russell 3rd 1, H Taegtmeyer 1
PMCID: PMC442945  PMID: 1541685

Abstract

Previous studies have indicated that ketone body-mediated contractile failure in rat hearts is due to inhibition of 2-oxoglutarate dehydrogenase, and it has been speculated that this inhibition is due to the sequestration of intramitochondrial CoA as acetoacetyl-CoA and acetyl-CoA. These studies were performed to determine whether oxidation of acetoacetate by isolated rat heart mitochondria results in a fall in intramitochondrial nonesterified CoA [CoASH] and whether increasing the available CoA improves contractile performance in hearts oxidizing acetoacetate. The oxidation of acetoacetate by isolated rat heart mitochondria resulted in depressed state 3 respiration as well as in a decrease in [CoASH]. Increasing the tissue content of CoASH in perfused hearts by providing the precursors for CoA relieved inhibition of 2-oxoglutarate dehydrogenase and improved the contractile performance of isolated working hearts. In contrast, the addition of carnitine increased the tissue content of CoASH but did not improve function. These findings suggest the presence of two different pools of CoASH. We conclude that ketone body-mediated inhibition of 2-oxoglutarate dehydrogenase is due to decreased intramitochondrial CoASH and that this inhibition of the citric acid cycle is a plausible mechanism for concomitant contractile failure.

Full text

PDF
968

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abiko Y. Investigations on pantothenic acid and its related compounds. X. Biochemical studies. 5. Purification and substrate specificity of phosphopantothenoylcysteine decarboxylase from rat liver. J Biochem. 1967 Mar;61(3):300–308. doi: 10.1093/oxfordjournals.jbchem.a128548. [DOI] [PubMed] [Google Scholar]
  2. Alexson S. E., Nedergaard J., Cannon B. Inhibition of acetyl-carnitine oxidation in rat brown-adipose-tissue mitochondria by erucoyl-carnitine is due to sequestration of CoA. Biochim Biophys Acta. 1985 Apr 25;834(2):149–158. doi: 10.1016/0005-2760(85)90150-x. [DOI] [PubMed] [Google Scholar]
  3. Alexson S., Nedergaard J., Cannon B. Partial protection against erucoyl-carnitine inhibition in hamster brown-adipose-tissue mitochondria is due to high CoA levels: a comparison with rat brown-adipose-tissue mitochondria. Comp Biochem Physiol B. 1986;83(1):191–196. doi: 10.1016/0305-0491(86)90352-4. [DOI] [PubMed] [Google Scholar]
  4. Beinlich C. J., Robishaw J. D., Neely J. R. Metabolism of pantothenic acid in hearts of diabetic rats. J Mol Cell Cardiol. 1989 Jul;21(7):641–649. doi: 10.1016/0022-2828(89)90605-6. [DOI] [PubMed] [Google Scholar]
  5. Brass E. P., Hoppel C. L. Effect of carnitine on mitochondrial oxidation of palmitoylearnitine. Biochem J. 1980 May 15;188(2):451–458. doi: 10.1042/bj1880451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brass E. P., Hoppel C. L. Relationship between acid-soluble carnitine and coenzyme A pools in vivo. Biochem J. 1980 Sep 15;190(3):495–504. doi: 10.1042/bj1900495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  8. Chua B. H., Giger K. E., Kleinhans B. J., Robishaw J. D., Morgan H. E. Differential effects of cysteine on protein and coenzyme A synthesis in rat heart. Am J Physiol. 1984 Jul;247(1 Pt 1):C99–106. doi: 10.1152/ajpcell.1984.247.1.C99. [DOI] [PubMed] [Google Scholar]
  9. Dry I. B., Wiskich J. T. 2-Oxoglutarate dehydrogenase and pyruvate dehydrogenase activities in plant mitochondria: interaction via a common coenzyme a pool. Arch Biochem Biophys. 1987 Aug 15;257(1):92–99. doi: 10.1016/0003-9861(87)90546-7. [DOI] [PubMed] [Google Scholar]
  10. Griffith A. D., Cyr D. M., Egan S. G., Tremblay G. C. Inhibition of pyruvate carboxylase by sequestration of coenzyme A with sodium benzoate. Arch Biochem Biophys. 1989 Feb 15;269(1):201–207. doi: 10.1016/0003-9861(89)90101-x. [DOI] [PubMed] [Google Scholar]
  11. HOAGLAND M. B., NOVELLI G. D. Biosynthesis of coenzyme A from phospho-pantetheine and of pantetheine from pantothenate. J Biol Chem. 1954 Apr;207(2):767–773. [PubMed] [Google Scholar]
  12. HUELSMANN W. C., SILIPRANDI D., CIMAN M., SILIPRANDI N. EFFECT OF CARNITINE ON THE OXIDATION OF ALPHA-OXOGLUTARATE TO SUCCINATE IN THE PRESENCE OF ACETOACETATE OR PYRUVATE. Biochim Biophys Acta. 1964 Oct 9;93:166–168. doi: 10.1016/0304-4165(64)90271-5. [DOI] [PubMed] [Google Scholar]
  13. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. An improved method for isolation of mitochondria in high yields from normal, ischemic, and autolyzed rat hearts. Anal Biochem. 1982 Sep 15;125(2):269–276. doi: 10.1016/0003-2697(82)90006-9. [DOI] [PubMed] [Google Scholar]
  14. Idell-Wenger J. A., Grotyohann L. W., Neely J. R. Regulation of fatty acid utilization in heart. Role of the carnitine-acetyl-CoA transferase and carnitine-acetyl carnitine translocase system. J Mol Cell Cardiol. 1982 Jul;14(7):413–417. doi: 10.1016/0022-2828(82)90172-9. [DOI] [PubMed] [Google Scholar]
  15. Kauppinen R. A., Hiltunen J. K., Hassinen I. E. Subcellular distribution of phosphagens in isolated perfused rat heart. FEBS Lett. 1980 Apr 7;112(2):273–276. doi: 10.1016/0014-5793(80)80196-7. [DOI] [PubMed] [Google Scholar]
  16. LaNoue K. F., Walajtys E. I., Williamson J. R. Regulation of glutamate metabolism and interactions with the citric acid cycle in rat heart mitochondria. J Biol Chem. 1973 Oct 25;248(20):7171–7183. [PubMed] [Google Scholar]
  17. Lopaschuk G. D., Hansen C. A., Neely J. R. Fatty acid metabolism in hearts containing elevated levels of CoA. Am J Physiol. 1986 Mar;250(3 Pt 2):H351–H359. doi: 10.1152/ajpheart.1986.250.3.H351. [DOI] [PubMed] [Google Scholar]
  18. Otto D. A., Chatzidakis C., Kasziba E., Cook G. A. Reciprocal effects of 5-(tetradecyloxy)-2-furoic acid on fatty acid oxidation. Arch Biochem Biophys. 1985 Oct;242(1):23–31. doi: 10.1016/0003-9861(85)90475-8. [DOI] [PubMed] [Google Scholar]
  19. Read G., Crabtree B., Smith G. H. The activities of 2-oxoglutarate dehydrogenase and pyruvate dehydrogenase in hearts and mammary glands from ruminants and non-ruminants. Biochem J. 1977 May 15;164(2):349–355. doi: 10.1042/bj1640349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reibel D. K., Wyse B. W., Berkich D. A., Palko W. M., Neely J. R. Effects of diabetes and fasting on pantothenic acid metabolism in rats. Am J Physiol. 1981 Jun;240(6):E597–E601. doi: 10.1152/ajpendo.1981.240.6.E597. [DOI] [PubMed] [Google Scholar]
  21. Robishaw J. D., Berkich D., Neely J. R. Rate-limiting step and control of coenzyme A synthesis in cardiac muscle. J Biol Chem. 1982 Sep 25;257(18):10967–10972. [PubMed] [Google Scholar]
  22. Robishaw J. D., Neely J. R. Pantothenate kinase and control of CoA synthesis in heart. Am J Physiol. 1984 Apr;246(4 Pt 2):H532–H541. doi: 10.1152/ajpheart.1984.246.4.H532. [DOI] [PubMed] [Google Scholar]
  23. Russell R. R., 3rd, Taegtmeyer H. Changes in citric acid cycle flux and anaplerosis antedate the functional decline in isolated rat hearts utilizing acetoacetate. J Clin Invest. 1991 Feb;87(2):384–390. doi: 10.1172/JCI115008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Swartzentruber M. S., Harris R. A. Inhibition of metabolic processes by coenzyme-A-sequestering aromatic acids. Prevention by para-chloro- and para-nitrobenzoic acids. Biochem Pharmacol. 1987 Oct 1;36(19):3147–3153. doi: 10.1016/0006-2952(87)90625-3. [DOI] [PubMed] [Google Scholar]
  25. Taegtmeyer H., Hems R., Krebs H. A. Utilization of energy-providing substrates in the isolated working rat heart. Biochem J. 1980 Mar 15;186(3):701–711. doi: 10.1042/bj1860701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Taegtmeyer H. On the inability of ketone bodies to serve as the only energy providing substrate for rat heart at physiological work load. Basic Res Cardiol. 1983 Jul-Aug;78(4):435–450. doi: 10.1007/BF02070167. [DOI] [PubMed] [Google Scholar]
  27. Tahiliani A. G., Neely J. R. Mitochondrial synthesis of coenzyme A is on the external surface. J Mol Cell Cardiol. 1987 Dec;19(12):1161–1167. doi: 10.1016/s0022-2828(87)80526-6. [DOI] [PubMed] [Google Scholar]
  28. Vary T. C., Neely J. R. Sodium dependence of carnitine transport in isolated perfused adult rat hearts. Am J Physiol. 1983 Feb;244(2):H247–H252. doi: 10.1152/ajpheart.1983.244.2.H247. [DOI] [PubMed] [Google Scholar]
  29. WILLIAMSON J. R., KREBS H. A. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. 1961 Sep;80:540–547. doi: 10.1042/bj0800540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES