Abstract
To determine whether chronic hypoxemia results in alterations in endocrine function that may contribute to growth failure, we measured growth hormone (GH), somatomedins (insulin-like growth factors I and II, IGF-I and IGF-2), hepatic growth hormone receptors, and circulating IGF-binding proteins IGFBP-3 and IGFBP-2 in 12 newborn lambs with surgically created pulmonic stenosis and atrial septal defect, and in 10 controls. During chronic hypoxemia (oxygen saturation of 60-74% for 2 wk), weight gain was 60% of control (hypoxemic, 135 +/- 20 vs. control, 216 +/- 26 g/d, P less than 0.02). IGF-I was decreased by 43% (hypoxemic 253.6 +/- 29.3 SE vs. control 448.0 +/- 75.5 ng/ml, P = 0.01), whereas GH was unchanged (19.9 +/- 5.1 vs. 11.9 +/- 3.0 ng/ml, NS). The increase in IGF-1 was associated with a decrease in IGFBP-3 (hypoxemic, 5.09 +/- 1.25 vs. control, 11.2 +/- 1.08 arbitrary absorbency units per mm (Au.mm), P less than 0.01), and increase in IGFBP-2 (0.47 +/- 0.03 vs. 0.19 +/- 0.13 Au.mm, P less than 0.05), but no significant downregulation of hepatic GH receptors (hypoxemic, 106.1 +/- 20.1 vs. control, 147.3 +/- 25.9 fmol/mg, NS). Thus, chronic hypoxemia in the newborn is associated with a decrease in IGF-I and IGFBP-3 in the face of normal GH. This suggests peripheral GH unresponsiveness, similar to protein-calorie malnutrition or GH receptor deficiency dwarfism, but mediated at a level distal to the hepatic GH receptor.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baum D., Beck R. Q., Haskell W. L. Growth and tissue abnormalities in young people with cyanotic congenital heart disease receiving systemic-pulmonary artery shunts. Am J Cardiol. 1983 Aug;52(3):349–352. doi: 10.1016/0002-9149(83)90137-6. [DOI] [PubMed] [Google Scholar]
- Bernstein D., Teitel D., Sidi D., Heymann M. A., Rudolph A. M. Redistribution of regional blood flow and oxygen delivery in experimental cyanotic heart disease in newborn lambs. Pediatr Res. 1987 Oct;22(4):389–393. doi: 10.1203/00006450-198710000-00004. [DOI] [PubMed] [Google Scholar]
- Bernstein D., Voss E., Huang S., Doshi R., Crane C. Differential regulation of right and left ventricular beta-adrenergic receptors in newborn lambs with experimental cyanotic heart disease. J Clin Invest. 1990 Jan;85(1):68–74. doi: 10.1172/JCI114435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheek D. B., Graystone J. E., Rowe R. D. Hypoxia and malnutrition in newborn rats: effects on RNA, DNA, and protein in tissues. Am J Physiol. 1969 Sep;217(3):642–645. doi: 10.1152/ajplegacy.1969.217.3.642. [DOI] [PubMed] [Google Scholar]
- Danilowicz D. A. Delay in bone age in children with cyanotic congenital heart disease. Radiology. 1973 Sep;108(3):655–658. doi: 10.1148/108.3.655. [DOI] [PubMed] [Google Scholar]
- Eshet R., Laron Z., Pertzelan A., Arnon R., Dintzman M. Defect of human growth hormone receptors in the liver of two patients with Laron-type dwarfism. Isr J Med Sci. 1984 Jan;20(1):8–11. [PubMed] [Google Scholar]
- Fahrer M., Gruñeiro L., Rivarola M., Bergadá C. Levels of plasma growth hormone in children with congenital heart disease. Acta Endocrinol (Copenh) 1974 Nov;77(3):451–459. doi: 10.1530/acta.0.0770451. [DOI] [PubMed] [Google Scholar]
- Freemark M., Comer M., Korner G. Differential solubilization of placental lactogen (PL)- and growth hormone-binding sites: further evidence for a unique PL receptor in fetal and maternal liver. Endocrinology. 1988 Jun;122(6):2771–2779. doi: 10.1210/endo-122-6-2771. [DOI] [PubMed] [Google Scholar]
- Gács G., Kun E., Berend K. Hypoglycaemia in infants and children with cyanotic congenital heart disease. Acta Paediatr Acad Sci Hung. 1973;14(2):105–111. [PubMed] [Google Scholar]
- HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
- Hait G., Corpus M., Lamarre F. R., Yuan S. H., Kypson J., Cheng G. Alteration of glucose and insulin metabolism in congenital heart disease. Circulation. 1972 Aug;46(2):333–346. doi: 10.1161/01.cir.46.2.333. [DOI] [PubMed] [Google Scholar]
- Heacock C. S., Sutherland R. M. Induction characteristics of oxygen regulated proteins. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1287–1290. doi: 10.1016/0360-3016(86)90155-0. [DOI] [PubMed] [Google Scholar]
- Hintz R. L., Suskind R., Amatayakul K., Thanangkul O., Olson R. Plasma somatomedin and growth hormone values in children with protein-calorie malnutrition. J Pediatr. 1978 Jan;92(1):153–156. doi: 10.1016/s0022-3476(78)80099-7. [DOI] [PubMed] [Google Scholar]
- Hossenlopp P., Seurin D., Segovia-Quinson B., Hardouin S., Binoux M. Analysis of serum insulin-like growth factor binding proteins using western blotting: use of the method for titration of the binding proteins and competitive binding studies. Anal Biochem. 1986 Apr;154(1):138–143. doi: 10.1016/0003-2697(86)90507-5. [DOI] [PubMed] [Google Scholar]
- Huse D. M., Feldt R. H., Nelson R. A., Novak L. P. Infants with congenital heart disease. Food intake, body weight, and energy metabolism. Am J Dis Child. 1975 Jan;129(1):65–69. doi: 10.1001/archpedi.1975.02120380043010. [DOI] [PubMed] [Google Scholar]
- Klein A. H., Foley B., Foley T. P., MacDonald H. M., Fisher D. A. Thyroid function studies in cord blood from premature infants with and without RDS. J Pediatr. 1981 May;98(5):818–820. doi: 10.1016/s0022-3476(81)80856-6. [DOI] [PubMed] [Google Scholar]
- LLUCH M., PONZ F. [Influence of anoxia on active sugar absorption by the intestine]. Rev Esp Fisiol. 1962 Dec;18:157–162. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lewitt M. S., Baxter R. C. Regulation of growth hormone-independent insulin-like growth factor-binding protein (BP-28) in cultured human fetal liver explants. J Clin Endocrinol Metab. 1989 Aug;69(2):246–252. doi: 10.1210/jcem-69-2-246. [DOI] [PubMed] [Google Scholar]
- Linde L. M., Dunn O. J., Schireson R., Rasof B. Growth in children with congenital heart disease. J Pediatr. 1967 Mar;70(3):413–419. doi: 10.1016/s0022-3476(67)80139-2. [DOI] [PubMed] [Google Scholar]
- Menon G., Poskitt E. M. Why does congenital heart disease cause failure to thrive? Arch Dis Child. 1985 Dec;60(12):1134–1139. doi: 10.1136/adc.60.12.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moshang T., Jr, Chance K. H., Kaplan M. M., Utiger R. D., Takahashi O. Effects of hypoxia on thyroid function tests. J Pediatr. 1980 Oct;97(4):602–604. doi: 10.1016/s0022-3476(80)80019-9. [DOI] [PubMed] [Google Scholar]
- Naeye R. L. Organ and cellular development in mice growing at simulated high altitude. Lab Invest. 1966 Apr;15(4):700–706. [PubMed] [Google Scholar]
- Phillips L. S. Nutrition, somatomedins, and the brain. Metabolism. 1986 Jan;35(1):78–87. doi: 10.1016/0026-0495(86)90100-9. [DOI] [PubMed] [Google Scholar]
- Postel-Vinay M. C., Cohen-Tanugi E., Charrier J. Growth hormone receptors in rat liver membranes: effects of fasting and refeeding, and correlation with plasma somatomedin activity. Mol Cell Endocrinol. 1982 Nov-Dec;28(3):657–669. doi: 10.1016/0303-7207(82)90153-8. [DOI] [PubMed] [Google Scholar]
- Raynaud J., Drouet L., Martineaud J. P., Bordachar J., Coudert J., Durand J. Time course of plasma growth hormone during exercise in humans at altitude. J Appl Physiol Respir Environ Exerc Physiol. 1981 Feb;50(2):229–233. doi: 10.1152/jappl.1981.50.2.229. [DOI] [PubMed] [Google Scholar]
- Rosenbloom A. L., Guevara Aguirre J., Rosenfeld R. G., Fielder P. J. The little women of Loja--growth hormone-receptor deficiency in an inbred population of southern Ecuador. N Engl J Med. 1990 Nov 15;323(20):1367–1374. doi: 10.1056/NEJM199011153232002. [DOI] [PubMed] [Google Scholar]
- Rosenfeld R. G., Aggarwal B. B., Hintz R. L., Dollar L. A. Recombinant DNA-derived methionyl human growth hormone is similar in membrane binding properties to human pituitary growth hormone. Biochem Biophys Res Commun. 1982 May 14;106(1):202–209. doi: 10.1016/0006-291x(82)92078-2. [DOI] [PubMed] [Google Scholar]
- Sidi D., Kuipers J. R., Teitel D., Heymann M. A., Rudolph A. M. Developmental changes in oxygenation and circulatory responses to hypoxemia in lambs. Am J Physiol. 1983 Oct;245(4):H674–H682. doi: 10.1152/ajpheart.1983.245.4.H674. [DOI] [PubMed] [Google Scholar]
- Soliman A. T., Hassan A. E., Aref M. K., Hintz R. L., Rosenfeld R. G., Rogol A. D. Serum insulin-like growth factors I and II concentrations and growth hormone and insulin responses to arginine infusion in children with protein-energy malnutrition before and after nutritional rehabilitation. Pediatr Res. 1986 Nov;20(11):1122–1130. doi: 10.1203/00006450-198611000-00012. [DOI] [PubMed] [Google Scholar]
- Sondheimer J. M., Hamilton J. R. Intestinal function in infants with severe congenital heart disease. J Pediatr. 1978 Apr;92(4):572–578. doi: 10.1016/s0022-3476(78)80290-x. [DOI] [PubMed] [Google Scholar]
- Stavenow L., Berg A. L. Effects of hypoxia and other injurious stimuli on collagen secretion and intracellular growth stimulating activity of bovine aortic smooth muscle cells in culture. Artery. 1987;14(4):198–208. [PubMed] [Google Scholar]
- Strangway A., Fowler R., Cunningham K., Hamilton J. R. Diet and growth in congenital heart disease. Pediatrics. 1976 Jan;57(1):75–86. [PubMed] [Google Scholar]
- Teitel D., Sidi D., Bernstein D., Heymann M. A., Rudolph A. M. Chronic hypoxemia in the newborn lamb: cardiovascular, hematopoietic, and growth adaptations. Pediatr Res. 1985 Oct;19(10):1004–1010. doi: 10.1203/00006450-198510000-00011. [DOI] [PubMed] [Google Scholar]
- Tejani N., Lifshitz F., Harper R. G. The response to an oral glucose load during convalescence from hypoxia in newborn infants. J Pediatr. 1979 May;94(5):792–796. doi: 10.1016/s0022-3476(79)80158-4. [DOI] [PubMed] [Google Scholar]
- Vanderhoof J. A., Hofschire P. J., Baluff M. A., Guest J. E., Murray N. D., Pinsky W. W., Kugler J. D., Antonson D. L. Continuous enteral feedings. An important adjunct to the management of complex congenital heart disease. Am J Dis Child. 1982 Sep;136(9):825–827. [PubMed] [Google Scholar]

