Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Jul 19;91(15):6860–6864. doi: 10.1073/pnas.91.15.6860

Wheat acetyl-coenzyme A carboxylase: cDNA and protein structure.

P Gornicki 1, J Podkowinski 1, L A Scappino 1, J DiMaio 1, E Ward 1, R Haselkorn 1
PMCID: PMC44297  PMID: 7913745

Abstract

cDNA fragments encoding part of wheat (Triticum aestivum) acetyl-CoA carboxylase (ACC; EC 6.4.1.2) were cloned by PCR using primers based on the alignment of several biotin-dependent carboxylases. A set of overlapping clones encoding the entire wheat ACC was then isolated by using these fragments as probes. The cDNA sequence contains a 2257-amino acid reading frame encoding a 251-kDa polypeptide. The amino acid sequence of the most highly conserved domain, corresponding to the biotin carboxylases of prokaryotes, is 52-55% identical to ACC of yeast, rat, and diatom. Identity with the available C-terminal amino acid sequence of maize ACC is 66%. The biotin attachment site has the typical eukaryotic EVMKM sequence. The cDNA does not encode an obvious chloroplast targeting sequence. Various cDNA fragments hybridize in Northern blots to a 7.9-kb mRNA. Southern analysis with cDNA probes revealed multiple hybridizing fragments in hexaploid wheat DNA. Some of the wheat cDNA probes also hybridize with ACC-specific DNA from other plants, indicating significant conservation among plant ACCs.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Feel W., Chirala S. S., Wakil S. J. Cloning of the yeast FAS3 gene and primary structure of yeast acetyl-CoA carboxylase. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4534–4538. doi: 10.1073/pnas.89.10.4534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alix J. H. A rapid procedure for cloning genes from lambda libraries by complementation of E. coli defective mutants: application to the fabE region of the E. coli chromosome. DNA. 1989 Dec;8(10):779–789. doi: 10.1089/dna.1989.8.779. [DOI] [PubMed] [Google Scholar]
  3. Ashton A. R., Jenkins C. L., Whitfeld P. R. Molecular cloning of two different cDNAs for maize acetyl CoA carboxylase. Plant Mol Biol. 1994 Jan;24(1):35–49. doi: 10.1007/BF00040572. [DOI] [PubMed] [Google Scholar]
  4. Best E. A., Knauf V. C. Organization and nucleotide sequences of the genes encoding the biotin carboxyl carrier protein and biotin carboxylase protein of Pseudomonas aeruginosa acetyl coenzyme A carboxylase. J Bacteriol. 1993 Nov;175(21):6881–6889. doi: 10.1128/jb.175.21.6881-6889.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cavener D. R., Ray S. C. Eukaryotic start and stop translation sites. Nucleic Acids Res. 1991 Jun 25;19(12):3185–3192. doi: 10.1093/nar/19.12.3185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chirala S. S. Coordinated regulation and inositol-mediated and fatty acid-mediated repression of fatty acid synthase genes in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1992 Nov 1;89(21):10232–10236. doi: 10.1073/pnas.89.21.10232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  8. Dean C., Leech R. M. Genome Expression during Normal Leaf Development : I. CELLULAR AND CHLOROPLAST NUMBERS AND DNA, RNA, AND PROTEIN LEVELS IN TISSUES OF DIFFERENT AGES WITHIN A SEVEN-DAY-OLD WHEAT LEAF. Plant Physiol. 1982 Apr;69(4):904–910. doi: 10.1104/pp.69.4.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Egin-Bühler B., Ebel J. Improved purification and further characterization of acetyl-CoA carboxylase from cultured cells of parsley (Petroselinum hortense). Eur J Biochem. 1983 Jun 15;133(2):335–339. doi: 10.1111/j.1432-1033.1983.tb07467.x. [DOI] [PubMed] [Google Scholar]
  10. Egli M. A., Gengenbach B. G., Gronwald J. W., Somers D. A., Wyse D. L. Characterization of Maize Acetyl-Coenzyme A Carboxylase. Plant Physiol. 1993 Feb;101(2):499–506. doi: 10.1104/pp.101.2.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elborough K. M., Simon J. W., Swinhoe R., Ashton A. R., Slabas A. R. Studies on wheat acetyl CoA carboxylase and the cloning of a partial cDNA. Plant Mol Biol. 1994 Jan;24(1):21–34. doi: 10.1007/BF00040571. [DOI] [PubMed] [Google Scholar]
  12. Gornicki P., Haselkorn R. Wheat acetyl-CoA carboxylase. Plant Mol Biol. 1993 Jun;22(3):547–552. doi: 10.1007/BF00015984. [DOI] [PubMed] [Google Scholar]
  13. Gornicki P., Scappino L. A., Haselkorn R. Genes for two subunits of acetyl coenzyme A carboxylase of Anabaena sp. strain PCC 7120: biotin carboxylase and biotin carboxyl carrier protein. J Bacteriol. 1993 Aug;175(16):5268–5272. doi: 10.1128/jb.175.16.5268-5272.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ha J., Daniel S., Kong I. S., Park C. K., Tae H. J., Kim K. H. Cloning of human acetyl-CoA carboxylase cDNA. Eur J Biochem. 1994 Jan 15;219(1-2):297–306. doi: 10.1111/j.1432-1033.1994.tb19941.x. [DOI] [PubMed] [Google Scholar]
  15. Hasslacher M., Ivessa A. S., Paltauf F., Kohlwein S. D. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J Biol Chem. 1993 May 25;268(15):10946–10952. [PubMed] [Google Scholar]
  16. Haymerle H., Herz J., Bressan G. M., Frank R., Stanley K. K. Efficient construction of cDNA libraries in plasmid expression vectors using an adaptor strategy. Nucleic Acids Res. 1986 Nov 11;14(21):8615–8624. doi: 10.1093/nar/14.21.8615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Knowles J. R. The mechanism of biotin-dependent enzymes. Annu Rev Biochem. 1989;58:195–221. doi: 10.1146/annurev.bi.58.070189.001211. [DOI] [PubMed] [Google Scholar]
  18. Kondo H., Shiratsuchi K., Yoshimoto T., Masuda T., Kitazono A., Tsuru D., Anai M., Sekiguchi M., Tanabe T. Acetyl-CoA carboxylase from Escherichia coli: gene organization and nucleotide sequence of the biotin carboxylase subunit. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9730–9733. doi: 10.1073/pnas.88.21.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lamppa G. K., Morelli G., Chua N. H. Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b-binding polypeptide. Mol Cell Biol. 1985 Jun;5(6):1370–1378. doi: 10.1128/mcb.5.6.1370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li S. J., Cronan J. E., Jr Putative zinc finger protein encoded by a conserved chloroplast gene is very likely a subunit of a biotin-dependent carboxylase. Plant Mol Biol. 1992 Dec;20(5):759–761. doi: 10.1007/BF00027147. [DOI] [PubMed] [Google Scholar]
  21. Li S. J., Cronan J. E., Jr The gene encoding the biotin carboxylase subunit of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Jan 15;267(2):855–863. [PubMed] [Google Scholar]
  22. Li S. J., Cronan J. E., Jr The genes encoding the two carboxyltransferase subunits of Escherichia coli acetyl-CoA carboxylase. J Biol Chem. 1992 Aug 25;267(24):16841–16847. [PubMed] [Google Scholar]
  23. López-Casillas F., Bai D. H., Luo X. C., Kong I. S., Hermodson M. A., Kim K. H. Structure of the coding sequence and primary amino acid sequence of acetyl-coenzyme A carboxylase. Proc Natl Acad Sci U S A. 1988 Aug;85(16):5784–5788. doi: 10.1073/pnas.85.16.5784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Muramatsu S., Mizuno T. Nucleotide sequence of the fabE gene and flanking regions containing a bent DNA sequence of Escherichia coli. Nucleic Acids Res. 1989 May 25;17(10):3982–3982. doi: 10.1093/nar/17.10.3982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roessler P. G., Ohlrogge J. B. Cloning and characterization of the gene that encodes acetyl-coenzyme A carboxylase in the alga Cyclotella cryptica. J Biol Chem. 1993 Sep 15;268(26):19254–19259. [PubMed] [Google Scholar]
  26. Samols D., Thornton C. G., Murtif V. L., Kumar G. K., Haase F. C., Wood H. G. Evolutionary conservation among biotin enzymes. J Biol Chem. 1988 May 15;263(14):6461–6464. [PubMed] [Google Scholar]
  27. Sasaki Y., Hakamada K., Suama Y., Nagano Y., Furusawa I., Matsuno R. Chloroplast-encoded protein as a subunit of acetyl-CoA carboxylase in pea plant. J Biol Chem. 1993 Nov 25;268(33):25118–25123. [PubMed] [Google Scholar]
  28. Takai T., Yokoyama C., Wada K., Tanabe T. Primary structure of chicken liver acetyl-CoA carboxylase deduced from cDNA sequence. J Biol Chem. 1988 Feb 25;263(6):2651–2657. [PubMed] [Google Scholar]
  29. Toh H., Kondo H., Tanabe T. Molecular evolution of biotin-dependent carboxylases. Eur J Biochem. 1993 Aug 1;215(3):687–696. doi: 10.1111/j.1432-1033.1993.tb18080.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES