Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Apr;89(4):1178–1188. doi: 10.1172/JCI115701

Engraftment and long-term expression of human fetal hemopoietic stem cells in sheep following transplantation in utero.

E D Zanjani 1, M G Pallavicini 1, J L Ascensao 1, A W Flake 1, R G Langlois 1, M Reitsma 1, F R MacKintosh 1, D Stutes 1, M R Harrison 1, M Tavassoli 1
PMCID: PMC442977  PMID: 1348253

Abstract

Hemopoietic stem cells from human fetal liver were transplanted in utero into preimmune fetal sheep (48-54 days of gestation). The fate of donor cells was followed using karyotype analysis, by immunofluorescence labeling with anti-CD antibodies, and by fluorescent in situ hybridization using human-specific DNA probes. Engraftment occurred in 13 of 33 recipients. Of five live born sheep that exhibited chimerism, all expressed human cells in the marrow, whereas three expressed them in blood as well. Engraftment was multilineage (erythroid, myeloid, and lymphoid) and human hemopoietic progenitors (multipotent colony-forming units, colony-forming units-granulocyte, macrophage, and erythroid burst-forming units) capable of forming colonies in vitro were detected in all five lambs for greater than 2 yr. These progenitors responded to human-specific growth factors both in vitro and in vivo. Thus the administration of recombinant human IL-3 and granulocyte macrophage-colony-stimulating factor to chimeric sheep resulted in a 2.1-3.4-fold increase in the relative expression of donor (human) cells. These results demonstrate that the permissive environment of the preimmune fetal sheep provides suitable conditions for the engraftment and long-term multilineage expression of human hemopoietic stem cells in a large animal model. In this model, donor human cells appear to retain certain phenotypic and functional characteristics that can be used to manipulate the size of donor cell pool.

Full text

PDF
1178

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash R. C., Detrick D. A., Zanjani E. D. Studies of human pluripotential hemopoietic stem cells (CFU-GEMM) in vitro. Blood. 1981 Aug;58(2):309–316. [PubMed] [Google Scholar]
  2. Auchincloss H., Jr Xenogeneic transplantation. A review. Transplantation. 1988 Jul;46(1):1–20. doi: 10.1097/00007890-198807000-00001. [DOI] [PubMed] [Google Scholar]
  3. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
  4. BILLINGHAM R. E., BRENT L., MEDAWAR P. B. Actively acquired tolerance of foreign cells. Nature. 1953 Oct 3;172(4379):603–606. doi: 10.1038/172603a0. [DOI] [PubMed] [Google Scholar]
  5. Binns R. M. Bone marrow and lymphoid cell injection of the pig foetus resulting in transplantation tolerance or immunity, and immunoglobulin production. Nature. 1967 Apr 8;214(5084):179–180. doi: 10.1038/214179a0. [DOI] [PubMed] [Google Scholar]
  6. Binns R. M. Bone marrow and lymphoid cell injection of the pig foetus resulting in transplantation tolerance or immunity, and immunoglobulin production. Nature. 1967 Apr 8;214(5084):179–180. doi: 10.1038/214179a0. [DOI] [PubMed] [Google Scholar]
  7. Brandt J., Srour E. F., van Besien K., Briddell R. A., Hoffman R. Cytokine-dependent long-term culture of highly enriched precursors of hematopoietic progenitor cells from human bone marrow. J Clin Invest. 1990 Sep;86(3):932–941. doi: 10.1172/JCI114795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DUNSFORD I., BOWLEY C. C., HUTCHISON A. M., THOMPSON J. S., SANGER R., RACE R. R. A human blood-group chimera. Br Med J. 1953 Jul 11;2(4827):81–81. doi: 10.1136/bmj.2.4827.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dorshkind K., Pollack S. B., Bosma M. J., Phillips R. A. Natural killer (NK) cells are present in mice with severe combined immunodeficiency (scid). J Immunol. 1985 Jun;134(6):3798–3801. [PubMed] [Google Scholar]
  10. Flake A. W., Harrison M. R., Adzick N. S., Zanjani E. D. Transplantation of fetal hematopoietic stem cells in utero: the creation of hematopoietic chimeras. Science. 1986 Aug 15;233(4765):776–778. doi: 10.1126/science.2874611. [DOI] [PubMed] [Google Scholar]
  11. Flake A. W., Harrison M. R., Zanjani E. D. In utero stem cell transplantation. Exp Hematol. 1991 Nov;19(10):1061–1064. [PubMed] [Google Scholar]
  12. Flake A. W., Harrison M. R., Zanjani E. D. In utero stem cell transplantation. Exp Hematol. 1991 Nov;19(10):1061–1064. [PubMed] [Google Scholar]
  13. Fodstad O., Hansen C. T., Cannon G. B., Statham C. N., Lichtenstein G. R., Boyd M. R. Lack of correlation between natural killer activity and tumor growth control in nude mice with different immune defects. Cancer Res. 1984 Oct;44(10):4403–4408. [PubMed] [Google Scholar]
  14. Harrison M. R., Slotnick R. N., Crombleholme T. M., Golbus M. S., Tarantal A. F., Zanjani E. D. In-utero transplantation of fetal liver haemopoietic stem cells in monkeys. Lancet. 1989 Dec 16;2(8677):1425–1427. doi: 10.1016/s0140-6736(89)92036-9. [DOI] [PubMed] [Google Scholar]
  15. Hartmanis M. G., Stadtman T. C. Solubilization of a membrane-bound diol dehydratase with retention of EPR g = 2.02 signal by using 2-(N-cyclohexylamino)ethanesulfonic acid buffer. Proc Natl Acad Sci U S A. 1987 Jan;84(1):76–79. doi: 10.1073/pnas.84.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  17. Kamel-Reid S., Dick J. E. Engraftment of immune-deficient mice with human hematopoietic stem cells. Science. 1988 Dec 23;242(4886):1706–1709. doi: 10.1126/science.2904703. [DOI] [PubMed] [Google Scholar]
  18. Krams S. M., Dorshkind K., Gershwin M. E. Generation of biliary lesions after transfer of human lymphocytes into severe combined immunodeficient (SCID) mice. J Exp Med. 1989 Dec 1;170(6):1919–1930. doi: 10.1084/jem.170.6.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Langlois R. G., Bigbee W. L., Jensen R. H. Flow cytometric characterization of normal and variant cells with monoclonal antibodies specific for glycophorin A. J Immunol. 1985 Jun;134(6):4009–4017. [PubMed] [Google Scholar]
  20. Langlois R. G., Nisbet B. A., Bigbee W. L., Ridinger D. N., Jensen R. H. An improved flow cytometric assay for somatic mutations at the glycophorin A locus in humans. Cytometry. 1990;11(4):513–521. doi: 10.1002/cyto.990110410. [DOI] [PubMed] [Google Scholar]
  21. Lubin I., Faktorowich Y., Lapidot T., Gan Y., Eshhar Z., Gazit E., Levite M., Reisner Y. Engraftment and development of human T and B cells in mice after bone marrow transplantation. Science. 1991 Apr 19;252(5004):427–431. doi: 10.1126/science.1826797. [DOI] [PubMed] [Google Scholar]
  22. Lubin I., Faktorowich Y., Lapidot T., Gan Y., Eshhar Z., Gazit E., Levite M., Reisner Y. Engraftment and development of human T and B cells in mice after bone marrow transplantation. Science. 1991 Apr 19;252(5004):427–431. doi: 10.1126/science.1826797. [DOI] [PubMed] [Google Scholar]
  23. McCune J. M., Namikawa R., Kaneshima H., Shultz L. D., Lieberman M., Weissman I. L. The SCID-hu mouse: murine model for the analysis of human hematolymphoid differentiation and function. Science. 1988 Sep 23;241(4873):1632–1639. doi: 10.1126/science.241.4873.1632. [DOI] [PubMed] [Google Scholar]
  24. McCune J. M., Namikawa R., Shih C. C., Rabin L., Kaneshima H. Suppression of HIV infection in AZT-treated SCID-hu mice. Science. 1990 Feb 2;247(4942):564–566. doi: 10.1126/science.2300816. [DOI] [PubMed] [Google Scholar]
  25. Mosier D. E., Gulizia R. J., Baird S. M., Wilson D. B. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature. 1988 Sep 15;335(6187):256–259. doi: 10.1038/335256a0. [DOI] [PubMed] [Google Scholar]
  26. Namikawa R., Weilbaecher K. N., Kaneshima H., Yee E. J., McCune J. M. Long-term human hematopoiesis in the SCID-hu mouse. J Exp Med. 1990 Oct 1;172(4):1055–1063. doi: 10.1084/jem.172.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Owen R. D. IMMUNOGENETIC CONSEQUENCES OF VASCULAR ANASTOMOSES BETWEEN BOVINE TWINS. Science. 1945 Oct 19;102(2651):400–401. doi: 10.1126/science.102.2651.400. [DOI] [PubMed] [Google Scholar]
  28. Pallavicini M. G., DeTeresa P. S., Rosette C., Gray J. W., Wurm F. M. Effects of methotrexate on transfected DNA stability in mammalian cells. Mol Cell Biol. 1990 Jan;10(1):401–404. doi: 10.1128/mcb.10.1.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SILVERSTEIN A. M., UHR J. W., KRANER K. L., LUKES R. J. Fetal response to antigenic stimulus. II. Antibody production by the fetal lamb. J Exp Med. 1963 May 1;117:799–812. doi: 10.1084/jem.117.5.799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sullivan K. M. Current status of bone marrow transplantation. Transplant Proc. 1989 Jun;21(3 Suppl 1):41–50. [PubMed] [Google Scholar]
  31. TILL J. E., McCULLOCH E. A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961 Feb;14:213–222. [PubMed] [Google Scholar]
  32. Tavassoli M. Embryonic and fetal hemopoiesis: an overview. Blood Cells. 1991;17(2):269–286. [PubMed] [Google Scholar]
  33. Tavassoli M., Hardy C. L. Molecular basis of homing of intravenously transplanted stem cells to the marrow. Blood. 1990 Sep 15;76(6):1059–1070. [PubMed] [Google Scholar]
  34. Tavassoli M., Konno M., Shiota Y., Omoto E., Minguell J. J., Zanjani E. D. Enhancement of the grafting efficiency of transplanted marrow cells by preincubation with interleukin-3 and granulocyte-macrophage colony-stimulating factor. Blood. 1991 Apr 1;77(7):1599–1606. [PubMed] [Google Scholar]
  35. Touraine J. L. In utero transplantation of fetal liver stem cells in humans. Blood Cells. 1991;17(2):379–387. [PubMed] [Google Scholar]
  36. Verfaillie C., Blakolmer K., McGlave P. Purified primitive human hematopoietic progenitor cells with long-term in vitro repopulating capacity adhere selectively to irradiated bone marrow stroma. J Exp Med. 1990 Aug 1;172(2):509–502. doi: 10.1084/jem.172.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weier H. U., Lucas J. N., Poggensee M., Segraves R., Pinkel D., Gray J. W. Two-color hybridization with high complexity chromosome-specific probes and a degenerate alpha satellite probe DNA allows unambiguous discrimination between symmetrical and asymmetrical translocations. Chromosoma. 1991 Jul;100(6):371–376. doi: 10.1007/BF00337515. [DOI] [PubMed] [Google Scholar]
  38. Yang Y. C., Ciarletta A. B., Temple P. A., Chung M. P., Kovacic S., Witek-Giannotti J. S., Leary A. C., Kriz R., Donahue R. E., Wong G. G. Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell. 1986 Oct 10;47(1):3–10. doi: 10.1016/0092-8674(86)90360-0. [DOI] [PubMed] [Google Scholar]
  39. Zanjani E. D., Mackintosh F. R., Harrison M. R. Hematopoietic chimerism in sheep and nonhuman primates by in utero transplantation of fetal hematopoietic stem cells. Blood Cells. 1991;17(2):349–366. [PubMed] [Google Scholar]
  40. van Furth R., Schuit H. R., Hijmans W. The immunological development of the human fetus. J Exp Med. 1965 Dec 1;122(6):1173–1188. doi: 10.1084/jem.122.6.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES