Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Apr;89(4):1248–1256. doi: 10.1172/JCI115709

Nitric oxide and angiotensin II. Glomerular and tubular interaction in the rat.

L De Nicola 1, R C Blantz 1, F B Gabbai 1
PMCID: PMC442985  PMID: 1556186

Abstract

Nitric oxide (NO) has been proposed to modulate the renal response to protein as well as basal renal hemodynamics. We investigated whether NO and angiotensin II (AII) interact to control glomerular hemodynamics and absolute proximal tubular reabsorption (APR) during glycine infusion and in unstimulated conditions. In control rats, glycine increased single nephron GFR and plasma flow with no change in APR. The NO synthase blocker, NG-monomethyl L-arginine (LNMMA), abolished the vasodilatory response to glycine, possibly through activation of tubuloglomerular feedback due to a decrease in APR produced by LNMMA + glycine. Pretreatment with an AII receptor antagonist, DuP 753, normalized the response to glycine at both glomerular and tubular levels. In unstimulated conditions, LNMMA produced glomerular arteriolar vasoconstriction, decreased the glomerular ultrafiltration coefficient, and reduced single nephron GFR. These changes were associated with a striking decrease in APR. DuP 753 prevented both glomerular and tubular changes induced by LNMMA. In conclusion, NO represents a physiological antagonist of AII at both the glomerulus and tubule in both the basal state and during glycine infusion; and inhibition of NO apparently enhances or uncovers the inhibitory effect of AII on proximal reabsorption.

Full text

PDF
1248

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvestrand A., Zimmerman L., Bergström J. Potential role of a liver-derived factor in mediating renal response to protein. Blood Purif. 1988;6(5):276–284. doi: 10.1159/000169555. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Meyer T. W., Rennke H. G., Brenner B. M. Control of glomerular hypertension limits glomerular injury in rats with reduced renal mass. J Clin Invest. 1985 Aug;76(2):612–619. doi: 10.1172/JCI112013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baylis C., Harton P., Engels K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol. 1990 Dec;1(6):875–881. doi: 10.1681/ASN.V16875. [DOI] [PubMed] [Google Scholar]
  4. Blantz R. C. Effect of mannitol on glomerular ultrafiltration in the hydropenic rat. J Clin Invest. 1974 Nov;54(5):1135–1143. doi: 10.1172/JCI107857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blantz R. C., Konnen K. S., Tucker B. J. Angiotensin II effects upon the glomerular microcirculation and ultrafiltration coefficient of the rat. J Clin Invest. 1976 Feb;57(2):419–434. doi: 10.1172/JCI108293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bosch J. P., Saccaggi A., Lauer A., Ronco C., Belledonne M., Glabman S. Renal functional reserve in humans. Effect of protein intake on glomerular filtration rate. Am J Med. 1983 Dec;75(6):943–950. doi: 10.1016/0002-9343(83)90873-2. [DOI] [PubMed] [Google Scholar]
  7. Brown S. A., Navar L. G. Single-nephron responses to systemic administration of amino acids in dogs. Am J Physiol. 1990 Nov;259(5 Pt 2):F739–F746. doi: 10.1152/ajprenal.1990.259.5.F739. [DOI] [PubMed] [Google Scholar]
  8. Castellino P., Coda B., DeFronzo R. A. Effect of amino acid infusion on renal hemodynamics in humans. Am J Physiol. 1986 Jul;251(1 Pt 2):F132–F140. doi: 10.1152/ajprenal.1986.251.1.F132. [DOI] [PubMed] [Google Scholar]
  9. Claris-Appiani A., Assael B. M., Tirelli A. S., Cavanna G., Corbetta C., Marra G. Proximal tubular function and hyperfiltration during amino acid infusion in man. Am J Nephrol. 1988;8(2):96–101. doi: 10.1159/000167565. [DOI] [PubMed] [Google Scholar]
  10. De Nicola L., Blantz R. C., Gabbai F. B. Renal functional reserve in treated and untreated hypertensive rats. Kidney Int. 1991 Sep;40(3):406–412. doi: 10.1038/ki.1991.226. [DOI] [PubMed] [Google Scholar]
  11. Dworkin L. D., Hostetter T. H., Rennke H. G., Brenner B. M. Hemodynamic basis for glomerular injury in rats with desoxycorticosterone-salt hypertension. J Clin Invest. 1984 May;73(5):1448–1461. doi: 10.1172/JCI111349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Harris P. J., Young J. A. Dose-dependent stimulation and inhibition of proximal tubular sodium reabsorption by angiotensin II in the rat kidney. Pflugers Arch. 1977 Jan 17;367(3):295–297. doi: 10.1007/BF00581370. [DOI] [PubMed] [Google Scholar]
  13. Hirschberg R. R., Zipser R. D., Slomowitz L. A., Kopple J. D. Glucagon and prostaglandins are mediators of amino acid-induced rise in renal hemodynamics. Kidney Int. 1988 Jun;33(6):1147–1155. doi: 10.1038/ki.1988.123. [DOI] [PubMed] [Google Scholar]
  14. Hirschberg R., Kopple J. D. Role of growth hormone in the amino acid-induced acute rise in renal function in man. Kidney Int. 1987 Sep;32(3):382–387. doi: 10.1038/ki.1987.221. [DOI] [PubMed] [Google Scholar]
  15. Hostetter T. H., Olson J. L., Rennke H. G., Venkatachalam M. A., Brenner B. M. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. Am J Physiol. 1981 Jul;241(1):F85–F93. doi: 10.1152/ajprenal.1981.241.1.F85. [DOI] [PubMed] [Google Scholar]
  16. Ishii K., Chang B., Kerwin J. F., Jr, Wagenaar F. L., Huang Z. J., Murad F. Formation of endothelium-derived relaxing factor in porcine kidney epithelial LLC-PK1 cells: an intra- and intercellular messenger for activation of soluble guanylate cyclase. J Pharmacol Exp Ther. 1991 Jan;256(1):38–43. [PubMed] [Google Scholar]
  17. King A. J., Troy J. L., Anderson S., Neuringer J. R., Gunning M., Brenner B. M. Nitric oxide: a potential mediator of amino acid-induced renal hyperemia and hyperfiltration. J Am Soc Nephrol. 1991 Jun;1(12):1271–1277. doi: 10.1681/ASN.V1121271. [DOI] [PubMed] [Google Scholar]
  18. Krishna G. G., Newell G., Miller E., Heeger P., Smith R., Polansky M., Kapoor S., Hoeldtke R. Protein-induced glomerular hyperfiltration: role of hormonal factors. Kidney Int. 1988 Feb;33(2):578–583. doi: 10.1038/ki.1988.36. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Levillain O., Hus-Citharel A., Morel F., Bankir L. Localization of arginine synthesis along rat nephron. Am J Physiol. 1990 Dec;259(6 Pt 2):F916–F923. doi: 10.1152/ajprenal.1990.259.6.F916. [DOI] [PubMed] [Google Scholar]
  21. Meyer T. W., Ichikawa I., Zatz R., Brenner B. M. The renal hemodynamic response to amino acid infusion in the rat. Trans Assoc Am Physicians. 1983;96:76–83. [PubMed] [Google Scholar]
  22. Seikaly M. G., Arant B. S., Jr, Seney F. D., Jr Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990 Oct;86(4):1352–1357. doi: 10.1172/JCI114846. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Shultz P. J., Schorer A. E., Raij L. Effects of endothelium-derived relaxing factor and nitric oxide on rat mesangial cells. Am J Physiol. 1990 Jan;258(1 Pt 2):F162–F167. doi: 10.1152/ajprenal.1990.258.1.F162. [DOI] [PubMed] [Google Scholar]
  24. Tolins J. P., Palmer R. M., Moncada S., Raij L. Role of endothelium-derived relaxing factor in regulation of renal hemodynamic responses. Am J Physiol. 1990 Mar;258(3 Pt 2):H655–H662. doi: 10.1152/ajpheart.1990.258.3.H655. [DOI] [PubMed] [Google Scholar]
  25. Tolins J. P., Raij L. Effects of amino acid infusion on renal hemodynamics. Role of endothelium-derived relaxing factor. Hypertension. 1991 Jun;17(6 Pt 2):1045–1051. doi: 10.1161/01.hyp.17.6.1045. [DOI] [PubMed] [Google Scholar]
  26. Tucker B. J., Blantz R. C. Determinants of proximal tubular reabsorption as mechanisms of glomerulotubular balance. Am J Physiol. 1978 Aug;235(2):F142–F150. doi: 10.1152/ajprenal.1978.235.2.F142. [DOI] [PubMed] [Google Scholar]
  27. Wong P. C., Price W. A., Chiu A. T., Duncia J. V., Carini D. J., Wexler R. R., Johnson A. L., Timmermans P. B. Nonpeptide angiotensin II receptor antagonists. IX. Antihypertensive activity in rats of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther. 1990 Feb;252(2):726–732. [PubMed] [Google Scholar]
  28. Woods L. L., Mizelle H. L., Montani J. P., Hall J. E. Mechanisms controlling renal hemodynamics and electrolyte excretion during amino acids. Am J Physiol. 1986 Aug;251(2 Pt 2):F303–F312. doi: 10.1152/ajprenal.1986.251.2.F303. [DOI] [PubMed] [Google Scholar]
  29. Woods L. L., Young E. W. Impaired renal hemodynamic response to protein feeding in dogs with experimental Fanconi syndrome. Am J Physiol. 1991 Jul;261(1 Pt 2):F14–F21. doi: 10.1152/ajprenal.1991.261.1.F14. [DOI] [PubMed] [Google Scholar]
  30. Xie M. H., Liu F. Y., Wong P. C., Timmermans P. B., Cogan M. G. Proximal nephron and renal effects of DuP 753, a nonpeptide angiotensin II receptor antagonist. Kidney Int. 1990 Sep;38(3):473–479. doi: 10.1038/ki.1990.228. [DOI] [PubMed] [Google Scholar]
  31. Zatz R., Meyer T. W., Rennke H. G., Brenner B. M. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic glomerulopathy. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5963–5967. doi: 10.1073/pnas.82.17.5963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zatz R., de Nucci G. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol. 1991 Aug;261(2 Pt 2):F360–F363. doi: 10.1152/ajprenal.1991.261.2.F360. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES