Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Apr;89(4):1296–1303. doi: 10.1172/JCI115715

Effect of acute changes in glomerular filtration rate on Na+/H+ exchange in rat renal cortex.

D A Maddox 1, S M Fortin 1, A Tartini 1, W D Barnes 1, F J Gennari 1
PMCID: PMC442991  PMID: 1313451

Abstract

Studies were undertaken in Munich-Wistar rats to assess the influence of changes in filtered bicarbonate (FLHCO3), induced by changes in GFR, on Na+/H+ exchange activity in renal brush border membrane vesicles (BBMV). Whole-kidney and micropuncture measurements of GFR, FLHCO3, and whole-kidney and proximal tubule HCO3 reabsorption (APRHCO3) were coupled with BBMV measurements of H+ gradient-driven 22Na+ uptake in each animal studied. 22Na+ uptake was measured at three Na+ concentration gradients to allow calculation of Vmax and Km for Na+/H+ exchange. GFR was varied by studying animals under conditions of hydropenia, plasma repletion, and acute plasma expansion. The increase in GFR, FLHCO3, and APRHCO3 induced by plasma administration correlated directly with an increase in the Vmax for Na+/H+ exchange in BBMV. The Km for sodium was unaffected. In the plasma-expanded rats, the Vmax for Na+/H+ exchange was 22% greater than in the hydropenic rats (P less than 0.025) whereas APRHCO3 was 86% greater (P less than 0.001). These results indicate that increases in FLHCO3, induced by acute increases in GFR, stimulate Na+/H+ exchange activity in proximal tubular epithelium. This stimulation is a mechanism which can, in part, account for the delivery dependence of proximal bicarbonate reabsorption.

Full text

PDF
1296

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiba T., Rocco V. K., Warnock D. G. Parallel adaptation of the rabbit renal cortical sodium/proton antiporter and sodium/bicarbonate cotransporter in metabolic acidosis and alkalosis. J Clin Invest. 1987 Aug;80(2):308–315. doi: 10.1172/JCI113074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aronson P. S. Energy-dependence of phlorizin binding to isolated renal microvillus membranes. Evidence concerning the mechanism of coupling between the electrochemical Na+ gradient the sugar transport. J Membr Biol. 1978 Jul 21;42(1):81–98. doi: 10.1007/BF01870395. [DOI] [PubMed] [Google Scholar]
  3. Aronson P. S., Sacktor B. The Na+ gradient-dependent transport of D-glucose in renal brush border membranes. J Biol Chem. 1975 Aug 10;250(15):6032–6039. [PubMed] [Google Scholar]
  4. Bank N., Aynedjian H. S., Mutz B. F. Evidence for a DCCD-sensitive component of proximal bicarbonate reabsorption. Am J Physiol. 1985 Nov;249(5 Pt 2):F636–F644. doi: 10.1152/ajprenal.1985.249.5.F636. [DOI] [PubMed] [Google Scholar]
  5. Bank N., Aynedjian H. S., Mutz B. F. Proximal bicarbonate absorption independent of Na+-H+ exchange: effect of bicarbonate load. Am J Physiol. 1989 Apr;256(4 Pt 2):F577–F582. doi: 10.1152/ajprenal.1989.256.4.F577. [DOI] [PubMed] [Google Scholar]
  6. Blumenthal S. S., Ware R. A., Kleinman J. G. Proximal tubule hydrogen ion transport processes in diuretic-induced metabolic alkalosis. J Lab Clin Med. 1985 Jul;106(1):17–22. [PubMed] [Google Scholar]
  7. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Capasso G., Kinne R., Malnic G., Giebisch G. Renal bicarbonate reabsorption in the rat. I. Effects of hypokalemia and carbonic anhydrase. J Clin Invest. 1986 Dec;78(6):1558–1567. doi: 10.1172/JCI112748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cogan M. G., Maddox D. A., Lucci M. S., Rector F. C., Jr Control of proximal bicarbonate reabsorption in normal and acidotic rats. J Clin Invest. 1979 Nov;64(5):1168–1180. doi: 10.1172/JCI109570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deen W. M., Maddox D. A., Robertson C. R., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. VII. Response to reduced renal mass. Am J Physiol. 1974 Sep;227(3):556–562. doi: 10.1152/ajplegacy.1974.227.3.556. [DOI] [PubMed] [Google Scholar]
  11. DuBose T. D., Jr, Lucci M. S., Hogg R. J., Pucacco L. R., Kokko J. P., Carter N. W. Comparison of acidification parameters in superficial and deep nephrons of the rat. Am J Physiol. 1983 May;244(5):F497–F503. doi: 10.1152/ajprenal.1983.244.5.F497. [DOI] [PubMed] [Google Scholar]
  12. Gennari F. J., Johns C., Caflisch C. R. Effect of benzolamide on pH in the proximal tubules and peritubular capillaries of the rat kidney. Pflugers Arch. 1980 Aug;387(1):69–72. doi: 10.1007/BF00580847. [DOI] [PubMed] [Google Scholar]
  13. Gesek F. A., Schoolwerth A. C. Hormonal interactions with the proximal Na(+)-H+ exchanger. Am J Physiol. 1990 Mar;258(3 Pt 2):F514–F521. doi: 10.1152/ajprenal.1990.258.3.F514. [DOI] [PubMed] [Google Scholar]
  14. Harris R. C., Seifter J. L., Brenner B. M. Adaptation of Na+-H+ exchange in renal microvillus membrane vesicles. Role of dietary protein and uninephrectomy. J Clin Invest. 1984 Dec;74(6):1979–1987. doi: 10.1172/JCI111619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kinsella J. L., Aronson P. S. Amiloride inhibition of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1981 Oct;241(4):F374–F379. doi: 10.1152/ajprenal.1981.241.4.F374. [DOI] [PubMed] [Google Scholar]
  16. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  17. Liu F. Y., Cogan M. G. Angiotensin II stimulation of hydrogen ion secretion in the rat early proximal tubule. Modes of action, mechanism, and kinetics. J Clin Invest. 1988 Aug;82(2):601–607. doi: 10.1172/JCI113638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Liu F. Y., Cogan M. G. Angiotensin II: a potent regulator of acidification in the rat early proximal convoluted tubule. J Clin Invest. 1987 Jul;80(1):272–275. doi: 10.1172/JCI113059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Liu F. Y., Cogan M. G. Axial heterogeneity in the rat proximal convoluted tubule. I. Bicarbonate, chloride, and water transport. Am J Physiol. 1984 Nov;247(5 Pt 2):F816–F821. doi: 10.1152/ajprenal.1984.247.5.F816. [DOI] [PubMed] [Google Scholar]
  20. Liu F. Y., Cogan M. G. Flow dependence of bicarbonate transport in the early (S1) proximal convoluted tubule. Am J Physiol. 1988 Jun;254(6 Pt 2):F851–F855. doi: 10.1152/ajprenal.1988.254.6.F851. [DOI] [PubMed] [Google Scholar]
  21. Liu F. Y., Cogan M. G. Kinetics of bicarbonate transport in the early proximal convoluted tubule. Am J Physiol. 1987 Nov;253(5 Pt 2):F912–F916. doi: 10.1152/ajprenal.1987.253.5.F912. [DOI] [PubMed] [Google Scholar]
  22. Liu F. Y., Cogan M. G. Role of angiotensin II in glomerulotubular balance. Am J Physiol. 1990 Jul;259(1 Pt 2):F72–F79. doi: 10.1152/ajprenal.1990.259.1.F72. [DOI] [PubMed] [Google Scholar]
  23. Maddox D. A., Atherton L. J., Deen W. M., Gennari F. J. Proximal HCO3- reabsorption and the determinants of tubular and capillary PCO2 in the rat. Am J Physiol. 1984 Jul;247(1 Pt 2):F73–F81. doi: 10.1152/ajprenal.1984.247.1.F73. [DOI] [PubMed] [Google Scholar]
  24. Maddox D. A., Deen W. M., Gennari F. J. Control of bicarbonate and fluid reabsorption in the proximal convoluted tubule. Semin Nephrol. 1987 Mar;7(1):72–81. [PubMed] [Google Scholar]
  25. Maddox D. A., Gennari F. J. Load dependence of HCO3 and H2O reabsorption in the early proximal tubule of the Munich-Wistar rat. Am J Physiol. 1985 Jan;248(1 Pt 2):F113–F121. doi: 10.1152/ajprenal.1985.248.1.F113. [DOI] [PubMed] [Google Scholar]
  26. Maddox D. A., Gennari F. J. Load dependence of proximal tubular bicarbonate reabsorption in chronic metabolic alkalosis in the rat. J Clin Invest. 1986 Mar;77(3):709–716. doi: 10.1172/JCI112365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maddox D. A., Gennari F. J. Proximal tubular bicarbonate reabsorption and PCO2 in chronic metabolic alkalosis in the rat. J Clin Invest. 1983 Oct;72(4):1385–1395. doi: 10.1172/JCI111095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Maddox D. A., Gennari F. J. The early proximal tubule: a high-capacity delivery-responsive reabsorptive site. Am J Physiol. 1987 Apr;252(4 Pt 2):F573–F584. doi: 10.1152/ajprenal.1987.252.4.F573. [DOI] [PubMed] [Google Scholar]
  29. Maddox D. A., Horn J. F., Famiano F. C., Gennari F. J. Load dependence of proximal tubular fluid and bicarbonate reabsorption in the remnant kidney of the Munich-Wistar rat. J Clin Invest. 1986 May;77(5):1639–1649. doi: 10.1172/JCI112481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Maddox D. A., Price D. C., Rector F. C., Jr Effects of surgery on plasma volume and salt and water excretion in rats. Am J Physiol. 1977 Dec;233(6):F600–F606. doi: 10.1152/ajprenal.1977.233.6.F600. [DOI] [PubMed] [Google Scholar]
  31. Maunsbach A. B., Giebisch G. H., Stanton B. A. Effects of flow rate on proximal tubule ultrastructure. Am J Physiol. 1987 Sep;253(3 Pt 2):F582–F587. doi: 10.1152/ajprenal.1987.253.3.F582. [DOI] [PubMed] [Google Scholar]
  32. Motulsky H. J., Ransnas L. A. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987 Nov;1(5):365–374. [PubMed] [Google Scholar]
  33. Nord E. P., Hafezi A., Kaunitz J. D., Trizna W., Fine L. G. pH gradient-dependent increased Na+-H+ antiport capacity of the rabbit remnant kidney. Am J Physiol. 1985 Jul;249(1 Pt 2):F90–F98. doi: 10.1152/ajprenal.1985.249.1.F90. [DOI] [PubMed] [Google Scholar]
  34. Preisig P. A., Ives H. E., Cragoe E. J., Jr, Alpern R. J., Rector F. C., Jr Role of the Na+/H+ antiporter in rat proximal tubule bicarbonate absorption. J Clin Invest. 1987 Oct;80(4):970–978. doi: 10.1172/JCI113190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rej R., Richards A. H. Interference by Tris buffer in the estimation of protein by the Lowry procedure. Anal Biochem. 1974 Nov;62(1):240–247. doi: 10.1016/0003-2697(74)90383-2. [DOI] [PubMed] [Google Scholar]
  36. Salihagić A., Macković M., Banfić H., Sabolić I. Short-term and long-term stimulation of Na+-H+ exchange in cortical brush-border membranes during compensatory growth of the rat kidney. Pflugers Arch. 1988 Dec;413(2):190–196. doi: 10.1007/BF00582530. [DOI] [PubMed] [Google Scholar]
  37. Santella R. N., Maddox D. A., Gennari F. J. Delivery dependence of early proximal bicarbonate reabsorption in the rat in respiratory acidosis and alkalosis. J Clin Invest. 1991 Feb;87(2):631–638. doi: 10.1172/JCI115040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Soleimani M., Bergman J. A., Hosford M. A., McKinney T. D. Potassium depletion increases luminal Na+/H+ exchange and basolateral Na+:CO3=:HCO3- cotransport in rat renal cortex. J Clin Invest. 1990 Oct;86(4):1076–1083. doi: 10.1172/JCI114810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Steiner R. W., Tucker B. J., Blantz R. C. Glomerular hemodynamics in rats with chronic sodium depletion. Effect of saralasin. J Clin Invest. 1979 Aug;64(2):503–512. doi: 10.1172/JCI109488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Vurek G. G., Warnock D. G., Corsey R. Measurement of picomole amounts of carbon dioxide by calorimetry. Anal Chem. 1975 Apr;47(4):765–767. doi: 10.1021/ac60354a024. [DOI] [PubMed] [Google Scholar]
  41. Zeidel M. L., Seifter J. L. Regulation of Na/H exchange in renal microvillus vesicles in chronic hypercapnia. Kidney Int. 1988 Jul;34(1):60–66. doi: 10.1038/ki.1988.145. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES