Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Apr;89(4):1304–1311. doi: 10.1172/JCI115716

Factors affecting hydrogen production and consumption by human fecal flora. The critical roles of hydrogen tension and methanogenesis.

A Strocchi 1, M D Levitt 1
PMCID: PMC442992  PMID: 1556190

Abstract

We studied the influence of hydrogen tension (PH2) and methanogenesis on H2 production and consumption by human fecal bacteria. Hydrogen consumption varied directly with PH2, and methanogenic feces consumed H2 far more rapidly than did nonmethanogenic feces. At low PH2, H2 production greatly exceeded consumption and there was negligible accumulation of the products of H2 catabolism, methane and sulfide. Thus, incubation at low PH2 allowed the first reported measurements of absolute as opposed to net H2 production. Feces incubated at high and intermediate PH2 had a net H2 production of only 1/900 and 1/64 of absolute production. Glucose fermentation by fecal bacteria yielded an absolute H2 production of 80 ml/g, a value far in excess of that excreted by volunteers ingesting lactulose. We conclude that most H2 produced by colonic bacteria is consumed and methanogenesis and fecal stirring (via its influence on fecal PH2) are critical determinants of H2 consumption and, hence, net H2 production. Study of fecal samples from four subjects with low breath H2 excretion after lactulose showed that absolute H2 production was normal, and the low H2 excretion apparently reflected increased consumption due to rapid methanogenesis (two subjects) and decreased luminal stirring (two subjects).

Full text

PDF
1304

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bjørneklett A., Jenssen E. Relationships between hydrogen (H2) and methane (CH4) production in man. Scand J Gastroenterol. 1982 Nov;17(8):985–992. [PubMed] [Google Scholar]
  2. Bond J. H., Jr, Levitt M. D. Use of pulmonary hydrogen (H 2 ) measurements to quantitate carbohydrate absorption. Study of partially gastrectomized patients. J Clin Invest. 1972 May;51(5):1219–1225. doi: 10.1172/JCI106916. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bornside G. H. Stability of human fecal flora. Am J Clin Nutr. 1978 Oct;31(10 Suppl):S141–S144. doi: 10.1093/ajcn/31.10.S141. [DOI] [PubMed] [Google Scholar]
  4. Calloway D. H., Murphy E. L. The use of expired air to measure intestinal gas formation. Ann N Y Acad Sci. 1968 Feb 26;150(1):82–95. doi: 10.1111/j.1749-6632.1968.tb19034.x. [DOI] [PubMed] [Google Scholar]
  5. Cloarec D., Bornet F., Gouilloud S., Barry J. L., Salim B., Galmiche J. P. Breath hydrogen response to lactulose in healthy subjects: relationship to methane producing status. Gut. 1990 Mar;31(3):300–304. doi: 10.1136/gut.31.3.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Flourié B., Etanchaud F., Florent C., Pellier P., Bouhnik Y., Rambaud J. C. Comparative study of hydrogen and methane production in the human colon using caecal and faecal homogenates. Gut. 1990 Jun;31(6):684–685. doi: 10.1136/gut.31.6.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibson G. R., Cummings J. H., Macfarlane G. T., Allison C., Segal I., Vorster H. H., Walker A. R. Alternative pathways for hydrogen disposal during fermentation in the human colon. Gut. 1990 Jun;31(6):679–683. doi: 10.1136/gut.31.6.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gibson G. R., Cummings J. H., Macfarlane G. T. Competition for hydrogen between sulphate-reducing bacteria and methanogenic bacteria from the human large intestine. J Appl Bacteriol. 1988 Sep;65(3):241–247. doi: 10.1111/j.1365-2672.1988.tb01891.x. [DOI] [PubMed] [Google Scholar]
  9. Gibson G. R., Macfarlane G. T., Cummings J. H. Occurrence of sulphate-reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol. 1988 Aug;65(2):103–111. doi: 10.1111/j.1365-2672.1988.tb01498.x. [DOI] [PubMed] [Google Scholar]
  10. Gilat T., Ben Hur H., Gelman-Malachi E., Terdiman R., Peled Y. Alterations of the colonic flora and their effect on the hydrogen breath test. Gut. 1978 Jul;19(7):602–605. doi: 10.1136/gut.19.7.602. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grimble G. Fibre, fermentation, flora, and flatus. Gut. 1989 Jan;30(1):6–13. doi: 10.1136/gut.30.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. JOHNS A. T. The mechanism of propionic acid formation by Veillonella gazogenes. J Gen Microbiol. 1951 May;5(2):326–336. doi: 10.1099/00221287-5-2-326. [DOI] [PubMed] [Google Scholar]
  13. Levitt M. D., Berggren T., Hastings J., Bond J. H. Hydrogen (H2) catabolism in the colon of the rat. J Lab Clin Med. 1974 Aug;84(2):163–167. [PubMed] [Google Scholar]
  14. Levitt M. D., Bond J. H., Jr Volume, composition, and source of intestinal gas. Gastroenterology. 1970 Dec;59(6):921–929. [PubMed] [Google Scholar]
  15. Levitt M. D., Donaldson R. M. Use of respiratory hydrogen (H2) excretion to detect carbohydrate malabsorption. J Lab Clin Med. 1970 Jun;75(6):937–945. [PubMed] [Google Scholar]
  16. Levitt M. D., Hirsh P., Fetzer C. A., Sheahan M., Levine A. S. H2 excretion after ingestion of complex carbohydrates. Gastroenterology. 1987 Feb;92(2):383–389. doi: 10.1016/0016-5085(87)90132-6. [DOI] [PubMed] [Google Scholar]
  17. Levitt M. D., Ingelfinger F. J. Hydrogen and methane production in man. Ann N Y Acad Sci. 1968 Feb 26;150(1):75–81. doi: 10.1111/j.1749-6632.1968.tb19033.x. [DOI] [PubMed] [Google Scholar]
  18. Levitt M. D. Production and excretion of hydrogen gas in man. N Engl J Med. 1969 Jul 17;281(3):122–127. doi: 10.1056/NEJM196907172810303. [DOI] [PubMed] [Google Scholar]
  19. Lovley D. R., Dwyer D. F., Klug M. J. Kinetic analysis of competition between sulfate reducers and methanogens for hydrogen in sediments. Appl Environ Microbiol. 1982 Jun;43(6):1373–1379. doi: 10.1128/aem.43.6.1373-1379.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Newcomer A. D., McGill D. B., Thomas P. J., Hofmann A. F. Prospective comparison of indirect methods for detecting lactase deficiency. N Engl J Med. 1975 Dec 11;293(24):1232–1236. doi: 10.1056/NEJM197512112932405. [DOI] [PubMed] [Google Scholar]
  21. Perman J. A., Modler S. Glycoproteins as substrates for production of hydrogen and methane by colonic bacterial flora. Gastroenterology. 1982 Aug;83(2):388–393. [PubMed] [Google Scholar]
  22. Perman J. A., Modler S., Olson A. C. Role of pH in production of hydrogen from carbohydrates by colonic bacterial flora. Studies in vivo and in vitro. J Clin Invest. 1981 Mar;67(3):643–650. doi: 10.1172/JCI110079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith C. J., Bryant M. P. Introduction to metabolic activities of intestinal bacteria. Am J Clin Nutr. 1979 Jan;32(1):149–157. doi: 10.1093/ajcn/32.1.149. [DOI] [PubMed] [Google Scholar]
  24. Weaver G. A., Krause J. A., Miller T. L., Wolin M. J. Constancy of glucose and starch fermentations by two different human faecal microbial communities. Gut. 1989 Jan;30(1):19–25. doi: 10.1136/gut.30.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES