Skip to main content
Protein & Cell logoLink to Protein & Cell
. 2012 Jun 8;3(8):571–580. doi: 10.1007/s13238-012-2927-3

CCR10 and its ligands in regulation of epithelial immunity and diseases

Na Xiong 1,, Yaoyao Fu 1, Shaomin Hu 1, Mingcan Xia 1, Jie Yang 1
PMCID: PMC4430102  NIHMSID: NIHMS687841  PMID: 22684736

Abstract

Epithelial tissues covering the external and internal surface of a body are constantly under physical, chemical or biological assaults. To protect the epithelial tissues and maintain their homeostasis, multiple layers of immune defense mechanisms are required. Besides the epithelial tissue-resident immune cells that provide the first line of defense, circulating immune cells are also recruited into the local tissues in response to challenges. Chemokines and chemokine receptors regulate tissue-specific migration, maintenance and functions of immune cells. Among them, chemokine receptor CCR10 and its ligands chemokines CCL27 and CCL28 are uniquely involved in the epithelial immunity. CCL27 is expressed predominantly in the skin by keratinocytes while CCL28 is expressed by epithelial cells of various mucosal tissues. CCR10 is expressed by various subsets of innate-like T cells that are programmed to localize to the skin during their developmental processes in the thymus. Circulating T cells might be imprinted by skin-associated antigen- presenting cells to express CCR10 for their recruitment to the skin during the local immune response. On the other hand, IgA antibody-producing B cells generated in mucosa-associated lymphoid tissues express CCR10 for their migration and maintenance at mucosal sites. Increasing evidence also found that CCR10/ligands are involved in regulation of other immune cells in epithelial immunity and are frequently exploited by epithelium-localizing or -originated cancer cells for their survival, proliferation and evasion from immune surveillance. Herein, we review current knowledge on roles of CCR10/ligands in regulation of epithelial immunity and diseases and speculate on related important questions worth further investigation.

Keywords: CCR10, epithelial immunity, epithelial diseases

References

  1. Bowman E.P., Kuklin N.A., Youngman K.R., Lazarus N.H., Kunkel E.J., Pan J., Greenberg H.B., Butcher E.C. The intestinal chemokine thymus-expressed chemokine (CCL25) attracts IgA antibody-secreting cells. J Exp Med. 2002;195:269–275. doi: 10.1084/jem.20010670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyden L.M., Lewis J.M., Barbee S.D., Bas A., Girardi M., Hayday A.C., Tigelaar R.E., Lifton R.P. Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat Genet. 2008;40:656–662. doi: 10.1038/ng.108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cerutti A., Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity. 2008;28:740–750. doi: 10.1016/j.immuni.2008.05.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cha H.R., Ko H.J., Kim E.D., Chang S.Y., Seo S.U., Cuburu N., Ryu S., Kim S., Kweon M.N. Mucosa-associated epithelial chemokine/CCL28 expression in the uterus attracts CCR10+ IgA plasma cells following mucosal vaccination via estrogen control. J Immunol. 2011;187:3044–3052. doi: 10.4049/jimmunol.1100402. [DOI] [PubMed] [Google Scholar]
  5. Charo I.F., Ransohoff R.M. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354:610–621. doi: 10.1056/NEJMra052723. [DOI] [PubMed] [Google Scholar]
  6. Chen L., Lin S.X., Agha-Majzoub R., Overbergh L., Mathieu C., Chan L.S. CCL27 is a critical factor for the development of atopic dermatitis in the keratin-14 IL-4 transgenic mouse model. Int Immunol. 2006;18:1233–1242. doi: 10.1093/intimm/dxl054. [DOI] [PubMed] [Google Scholar]
  7. Corthésy B. Roundtrip ticket for secretory IgA: role in mucosal homeostasis? J Immunol. 2007;178:27–32. doi: 10.4049/jimmunol.178.1.27. [DOI] [PubMed] [Google Scholar]
  8. De Creus A., Van Beneden K., Stevenaert F., Debacker V., Plum J., Leclercq G. Developmental and functional defects of thymic and epidermal V gamma 3 cells in IL-15-deficient and IFN regulatory factor-1-deficient mice. J Immunol. 2002;168:6486–6493. doi: 10.4049/jimmunol.168.12.6486. [DOI] [PubMed] [Google Scholar]
  9. Dent A.L., Matis L.A., Hooshmand F., Widacki S.M., Bluestone J.A., Hedrick S.M. Self-reactive γ δ T cells are eliminated in the thymus. Nature. 1990;343:714–719. doi: 10.1038/343714a0. [DOI] [PubMed] [Google Scholar]
  10. Duhen T., Geiger R., Jarrossay D., Lanzavecchia A., Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. 2009;10:857–863. doi: 10.1038/ni.1767. [DOI] [PubMed] [Google Scholar]
  11. Eksteen B., Miles A., Curbishley S.M., Tselepis C., Grant A.J., Walker L.S., Adams D.H. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10. J Immunol. 2006;177:593–603. doi: 10.4049/jimmunol.177.1.593. [DOI] [PubMed] [Google Scholar]
  12. English K., Brady C., Corcoran P., Cassidy J.P., Mahon B.P. Inflammation of the respiratory tract is associated with CCL28 and CCR10 expression in a murine model of allergic asthma. Immunol Lett. 2006;103:92–100. doi: 10.1016/j.imlet.2005.09.011. [DOI] [PubMed] [Google Scholar]
  13. Eyerich S., Eyerich K., Pennino D., Carbone T., Nasorri F., Pallotta S., Cianfarani F., Odorisio T., Traidl-Hoffmann C., Behrendt H., et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 2009;119:3573–3585. doi: 10.1172/JCI40202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Facciabene A., Peng X., Hagemann I.S., Balint K., Barchetti A., Wang L.P., Gimotty P.A., Gilks C.B., Lal P., Zhang L., et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature. 2011;475:226–230. doi: 10.1038/nature10169. [DOI] [PubMed] [Google Scholar]
  15. Feng N., Jaimes M.C., Lazarus N.H., Monak D., Zhang C., Butcher E.C., Greenberg H.B. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA+ plasmablast recruitment to the intestinal lamina propria after rotavirus infection. J Immunol. 2006;176:5749–5759. doi: 10.4049/jimmunol.176.10.5749. [DOI] [PubMed] [Google Scholar]
  16. Fujita Y., Abe R., Sasaki M., Honda A., Furuichi M., Asano Y., Norisugi O., Shimizu T., Shimizu H. Presence of circulating CCR10+ T cells and elevated serum CTACK/CCL27 in the early stage of mycosis fungoides. Clin Cancer Res. 2006;12:2670–2675. doi: 10.1158/1078-0432.CCR-05-1513. [DOI] [PubMed] [Google Scholar]
  17. Girardi M., Lewis J., Glusac E., Filler R.B., Geng L., Hayday A.C., Tigelaar R.E. Resident skin-specific gammadelta T cells provide local, nonredundant regulation of cutaneous inflammation. J Exp Med. 2002;195:855–867. doi: 10.1084/jem.20012000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Girardi M., Oppenheim D.E., Steele C.R., Lewis J.M., Glusac E., Filler R., Hobby P., Sutton B., Tigelaar R.E., Hayday A.C. Regulation of cutaneous malignancy by gammadelta T cells. Science. 2001;294:605–609. doi: 10.1126/science.1063916. [DOI] [PubMed] [Google Scholar]
  19. Grayson M.H., Cheung D., Rohlfing M.M., Kitchens R., Spiegel D.E., Tucker J., Battaile J.T., Alevy Y., Yan L., Agapov E., et al. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J Exp Med. 2007;204:2759–2769. doi: 10.1084/jem.20070360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hayakawa I., Hasegawa M., Matsushita T., Yanaba K., Kodera M., Komura K., Takehara K., Sato S. Increased cutaneous T-cell-attracting chemokine levels in sera from patients with systemic sclerosis. Rheumatology (Oxford) 2005;44:873–878. doi: 10.1093/rheumatology/keh625. [DOI] [PubMed] [Google Scholar]
  21. Hayday A.C. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol. 2000;18:975–1026. doi: 10.1146/annurev.immunol.18.1.975. [DOI] [PubMed] [Google Scholar]
  22. Hieshima K., Kawasaki Y., Hanamoto H., Nakayama T., Nagakubo D., Kanamaru A., Yoshie O. CC chemokine ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cells. J Immunol. 2004;173:3668–3675. doi: 10.4049/jimmunol.173.6.3668. [DOI] [PubMed] [Google Scholar]
  23. Hieshima K., Ohtani H., Shibano M., Izawa D., Nakayama T., Kawasaki Y., Shiba F., Shiota M., Katou F., Saito T., et al. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity. J Immunol. 2003;170:1452–1461. doi: 10.4049/jimmunol.170.3.1452. [DOI] [PubMed] [Google Scholar]
  24. Hijnen D., De Bruin-Weller M., Oosting B., Lebre C., De Jong E., Bruijnzeel-Koomen C., Knol E. Serum thymus and activation-regulated chemokine (TARC) and cutaneous T cell-attracting chemokine (CTACK) levels in allergic diseases: TARC and CTACK are disease-specific markers for atopic dermatitis. J Allergy Clin Immunol. 2004;113:334–340. doi: 10.1016/j.jaci.2003.12.007. [DOI] [PubMed] [Google Scholar]
  25. Homey B., Alenius H., Müller A., Soto H., Bowman E.P., Yuan W., McEvoy L., Lauerma A.I., Assmann T., Bünemann E., et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat Med. 2002;8:157–165. doi: 10.1038/nm0202-157. [DOI] [PubMed] [Google Scholar]
  26. Homey B., Wang W., Soto H., Buchanan M.E., Wiesenborn A., Catron D., Müller A., McClanahan T.K., Dieu-Nosjean M.C., Orozco R., et al. Cutting edge: the orphan chemokine receptor G protein-coupled receptor-2 (GPR-2, CCR10) binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC) J Immunol. 2000;164:3465–3470. doi: 10.4049/jimmunol.164.7.3465. [DOI] [PubMed] [Google Scholar]
  27. Hon K.L., Leung T.F., Ma K.C., Li A.M., Wong Y., Fok T.F. Serum levels of cutaneous T-cell attracting chemokine (CTACK) as a laboratory marker of the severity of atopic dermatitis in children. Clin Exp Dermatol. 2004;29:293–296. doi: 10.1111/j.1365-2230.2004.01501.x. [DOI] [PubMed] [Google Scholar]
  28. Hu S., Yang K., Yang J., Li M., Xiong N. Critical roles of chemokine receptor CCR10 in regulating memory IgA responses in intestines. Proc Natl Acad Sci U S A. 2011;108:E1035–E1044. doi: 10.1073/pnas.1100156108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ishida I., Verbeek S., Bonneville M., Itohara S., Berns A., Tonegawa S. T-cell receptor γ δ and γ transgenic mice suggest a role of a γ gene silencer in the generation of α β T cells. Proc Natl Acad Sci U S A. 1990;87:3067–3071. doi: 10.1073/pnas.87.8.3067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ito K., Van Kaer L., Bonneville M., Hsu S., Murphy D.B., Tonegawa S. Recognition of the product of a novel MHC TL region gene (27b) by a mouse gamma delta T cell receptor. Cell. 1990;62:549–561. doi: 10.1016/0092-8674(90)90019-B. [DOI] [PubMed] [Google Scholar]
  31. Jameson J., Ugarte K., Chen N., Yachi P., Fuchs E., Boismenu R., Havran W.L. A role for skin gammadelta T cells in wound repair. Science. 2002;296:747–749. doi: 10.1126/science.1069639. [DOI] [PubMed] [Google Scholar]
  32. Jarmin D.I., Rits M., Bota D., Gerard N.P., Graham G.J., Clark-Lewis I., Gerard C. Cutting edge: identification of the orphan receptor G-protein-coupled receptor 2 as CCR10, a specific receptor for the chemokine ESkine. J Immunol. 2000;164:3460–3464. doi: 10.4049/jimmunol.164.7.3460. [DOI] [PubMed] [Google Scholar]
  33. Jensen K.D., Shin S., Chien Y.H. Cutting edge: Gammadelta intraepithelial lymphocytes of the small intestine are not biased toward thymic antigens. J Immunol. 2009;182:7348–7351. doi: 10.4049/jimmunol.0900465. [DOI] [PubMed] [Google Scholar]
  34. Jiang X., Campbell J.J., Kupper T.S. Embryonic trafficking of gammadelta T cells to skin is dependent on E/P selectin ligands and CCR4. Proc Natl Acad Sci U S A. 2010;107:7443–7448. doi: 10.1073/pnas.0912943107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Jin Y., Xia M., Saylor C.M., Narayan K., Kang J., Wiest D.L., Wang Y., Xiong N. Cutting edge: Intrinsic programming of thymic γ δ T cells for specific peripheral tissue localization. J Immunol. 2010;185:7156–7160. doi: 10.4049/jimmunol.1002781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Jin Y., Xia M., Sun A., Saylor C.M., Xiong N. CCR10 is important for the development of skin-specific gammadeltaT cells by regulating their migration and location. J Immunol. 2010;185:5723–5731. doi: 10.4049/jimmunol.1001612. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. John A.E., Thomas M.S., Berlin A.A., Lukacs N.W. Temporal production of CCL28 corresponds to eosinophil accu mulation and airway hyperreactivity in allergic airway inflammation. Am J Pathol. 2005;166:345–353. doi: 10.1016/S0002-9440(10)62258-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Kagami S., Kakinuma T., Saeki H., Tsunemi Y., Fujita H., Sasaki K., Nakamura K., Takekoshi T., Kishimoto M., Mitsui H., et al. Increased serum CCL28 levels in patients with atopic dermatitis, psoriasis vulgaris and bullous pemphigoid. J Invest Dermatol. 2005;124:1088–1090. doi: 10.1111/j.0022-202X.2005.23700.x. [DOI] [PubMed] [Google Scholar]
  39. Kagami S., Saeki H., Komine M., Kakinuma T., Nakamura K., Tsunemi Y., Sasaki K., Asahina A., Tamaki K. CCL28 production in HaCaT cells was mediated by different signal pathways from CCL27. Exp Dermatol. 2006;15:95–100. doi: 10.1111/j.1600-0625.2005.00390.x. [DOI] [PubMed] [Google Scholar]
  40. Kagami S., Saeki H., Tsunemi Y., Nakamura K., Kuwano Y., Komine M., Nakayama T., Yoshie O., Tamaki K. CCL27-transgenic mice show enhanced contact hypersensitivity to Th2, but not Th1 stimuli. Eur J Immunol. 2008;38:647–657. doi: 10.1002/eji.200737685. [DOI] [PubMed] [Google Scholar]
  41. Kai H., Kadono T., Kakinuma T., Tomita M., Ohmatsu H., Asano Y., Tada Y., Sugaya M., Sato S. CCR10 and CCL27 are overexpressed in cutaneous squamous cell carcinoma. Pathol Res Pract. 2011;207:43–48. doi: 10.1016/j.prp.2010.10.007. [DOI] [PubMed] [Google Scholar]
  42. Kakinuma T., Saeki H., Tsunemi Y., Fujita H., Asano N., Mitsui H., Tada Y., Wakugawa M., Watanabe T., Torii H., et al. Increased serum cutaneous T cell-attracting chemokine (CCL27) levels in patients with atopic dermatitis and psoriasis vulgaris. J Allergy Clin Immunol. 2003;111:592–597. doi: 10.1067/mai.2003.114. [DOI] [PubMed] [Google Scholar]
  43. Kanda N., Koike S., Watanabe S. IL-17 suppresses TNF-alpha-induced CCL27 production through induction of COX-2 in human keratinocytes. J Allergy Clin Immunol. 2005;116:1144–1150. doi: 10.1016/j.jaci.2005.08.014. [DOI] [PubMed] [Google Scholar]
  44. Kawai K., Suzuki H., Tomiyama K., Minagawa M., Mak T.W., Ohashi P.S. Requirement of the IL-2 receptor beta chain for the development of Vgamma3 dendritic epidermal T cells. J Invest Dermatol. 1998;110:961–965. doi: 10.1046/j.1523-1747.1998.00214.x. [DOI] [PubMed] [Google Scholar]
  45. Kraynyak K.A., Kutzler M.A., Cisper N.J., Khan A.S., Draghia-Akli R., Sardesal N.Y., Lewis M.G., Yan J., Weiner D.B. Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine. 2010;28:1942–1951. doi: 10.1016/j.vaccine.2009.10.095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Kuhnelt-Leddihn L., Muller H., Eisendle K., Zelger B., Weinlich G. Overexpression of the chemokine receptors CXCR4, CCR7, CCR9, and CCR10 in human primary cutaneous melanoma: a potential prognostic value for CCR7 and CCR10? Arch Dermatol Res. 2012;304:185–193. doi: 10.1007/s00403-012-1222-8. [DOI] [PubMed] [Google Scholar]
  47. Kunkel E.J., Kim C.H., Lazarus N.H., Vierra M.A., Soler D., Bowman E.P., Butcher E.C. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells. J Clin Invest. 2003;111:1001–1010. doi: 10.1172/JCI17244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Lazarus N.H., Kunkel E.J., Johnston B., Wilson E., Youngman K.R., Butcher E.C. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts. J Immunol. 2003;170:3799–3805. doi: 10.4049/jimmunol.170.7.3799. [DOI] [PubMed] [Google Scholar]
  49. Liu B., Wilson E. The antimicrobial activity of CCL28 is dependent on C-terminal positively-charged amino acids. Eur J Immunol. 2010;40:186–196. doi: 10.1002/eji.200939819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Lorenz R.G., Chaplin D.D., McDonald K.G., McDonough J.S., Newberry R.D. Isolated lymphoid follicle formation is inducible and dependent upon lymphotoxin-sufficient B lymphocytes, lymphotoxin beta receptor, and TNF receptor I function. J Immunol. 2003;170:5475–5482. doi: 10.4049/jimmunol.170.11.5475. [DOI] [PubMed] [Google Scholar]
  51. Maeda S., Ohno K., Nakamura K., Uchida K., Nakashima K., Fukushima K., Tsukamoto A., Goto-Koshino Y., Fujino Y., Tsujimoto H. Quantification of chemokine and chemokine receptor gene expression in duodenal mucosa of dogs with inflammatory bowel disease. Vet Immunol Immunopathol. 2011;144:290–298. doi: 10.1016/j.vetimm.2011.08.020. [DOI] [PubMed] [Google Scholar]
  52. Marchese A., Docherty J.M., Nguyen T., Heiber M., Cheng R., Heng H.H., Tsui L.C., Shi X., George S.R., O’Dowd B.F. Cloning of human genes encoding novel G protein-coupled receptors. Genomics. 1994;23:609–618. doi: 10.1006/geno.1994.1549. [DOI] [PubMed] [Google Scholar]
  53. McDonald K.G., Newberry R.D. Whole-mount techniques to evaluate subepithelial cellular populations in the adult mouse intestine. Biotechniques. 2007;43:50. doi: 10.2144/000112514. [DOI] [PubMed] [Google Scholar]
  54. Mei H.E., Yoshida T., Sime W., Hiepe F., Thiele K., Manz R.A., Radbruch A., Dörner T. Blood-borne human plasma cells in steady state are derived from mucosal immune responses. Blood. 2009;113:2461–2469. doi: 10.1182/blood-2008-04-153544. [DOI] [PubMed] [Google Scholar]
  55. Mirshahpanah P., Li Y.Y., Burkhardt N., Asadullah K., Zollner T.M. CCR4 and CCR10 ligands play additive roles in mouse contact hypersensitivity. Exp Dermatol. 2008;17:30–34. doi: 10.1111/j.1600-0625.2007.00630.x. [DOI] [PubMed] [Google Scholar]
  56. Moed H., Boorsma D.M., Tensen C.P., Flier J., Jonker M.J., Stoof T.J., von Blomberg B.M., Bruynzeel D.P., Scheper R.J., Rustemeyer T., et al. Increased CCL27-CCR10 expression in allergic contact dermatitis: implications for local skin memory. J Pathol. 2004;204:39–46. doi: 10.1002/path.1619. [DOI] [PubMed] [Google Scholar]
  57. Mora J.R., von Andrian U.H. Differentiation and homing of IgA-secreting cells. Mucosal Immunol. 2008;1:96–109. doi: 10.1038/mi.2007.14. [DOI] [PubMed] [Google Scholar]
  58. Morales J., Homey B., Vicari A.P., Hudak S., Oldham E., Hedrick J., Orozco R., Copeland N.G., Jenkins N.A., McEvoy L.M., et al. CTACK, a skin-associated chemokine that preferentially attracts skin-homing memory T cells. Proc Natl Acad Sci U S A. 1999;96:14470–14475. doi: 10.1073/pnas.96.25.14470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Morteau O., Gerard C., Lu B., Ghiran S., Rits M., Fujiwara Y., Law Y., Distelhorst K., Nielsen E.M., Hill E.D., et al. An indispensable role for the chemokine receptor CCR10 in IgA antibody-secreting cell accumulation. J Immunol. 2008;181:6309–6315. doi: 10.4049/jimmunol.181.9.6309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Müller A., Homey B., Soto H., Ge N., Catron D., Buchanan M.E., McClanahan T., Murphy E., Yuan W., Wagner S.N., et al. Involvement of chemokine receptors in breast cancer metastasis. Nature. 2001;410:50–56. doi: 10.1038/35065016. [DOI] [PubMed] [Google Scholar]
  61. Murakami T., Cardones A.R., Finkelstein S.E., Restifo N.P., Klaunberg B.A., Nestle F.O., Castillo S.S., Dennis P.A., Hwang S.T. Immune evasion by murine melanoma mediated through CC chemokine receptor-10. J Exp Med. 2003;198:1337–1347. doi: 10.1084/jem.20030593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Notohamiprodjo M., Segerer S., Huss R., Hildebrandt B., Soler D., Djafarzadeh R., Buck W., Nelson P.J., von Luettichau I. CCR10 is expressed in cutaneous T-cell lymphoma. Int J Cancer. 2005;115:641–647. doi: 10.1002/ijc.20922. [DOI] [PubMed] [Google Scholar]
  63. Ogawa H., Iimura M., Eckmann L., Kagnoff M.F. Regulated production of the chemokine CCL28 in human colon epithelium. Am J Physiol Gastrointest Liver Physiol. 2004;287:G1062–G1069. doi: 10.1152/ajpgi.00162.2004. [DOI] [PubMed] [Google Scholar]
  64. Pabst O., Ohl L., Wendland M., Wurbel M.A., Kremmer E., Malissen B., Förster R. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine. J Exp Med. 2004;199:411–416. doi: 10.1084/jem.20030996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Pan J., Kunkel E.J., Gosslar U., Lazarus N., Langdon P., Broadwell K., Vierra M.A., Genovese M.C., Butcher E.C., Soler D. A novel chemokine ligand for CCR10 and CCR3 expressed by epithelial cells in mucosal tissues. J Immunol. 2000;165:2943–2949. doi: 10.4049/jimmunol.165.6.2943. [DOI] [PubMed] [Google Scholar]
  66. Pivarcsi A., Müller A., Hippe A., Rieker J., van Lierop A., Steinhoff M., Seeliger S., Kubitza R., Pippirs U., Meller S., et al. Tumor immune escape by the loss of homeostatic chemokine expression. Proc Natl Acad Sci U S A. 2007;104:19055–19060. doi: 10.1073/pnas.0705673104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Rainone V., Dubois G., Temchura V., Überla K., Clivio A., Nebuloni M., Lauri E., Trabattoni D., Veas F., Clerici M. CCL28 induces mucosal homing of HIV-1-specific IgA-secreting plasma cells in mice immunized with HIV-1 virus-like particles. PLoS One. 2011;6:e26979. doi: 10.1371/journal.pone.0026979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Reiss Y., Proudfoot A.E., Power C.A., Campbell J.J., Butcher E.C. CC chemokine receptor (CCR)4 and the CCR10 ligand cutaneous T cell-attracting chemokine (CTACK) in lymphocyte trafficking to inflamed skin. J Exp Med. 2001;194:1541–1547. doi: 10.1084/jem.194.10.1541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Riis J.L., Johansen C., Vestergaard C., Bech R., Kragballe K., Iversen L. Kinetics and differential expression of the skin-related chemokines CCL27 and CCL17 in psoriasis, atopic dermatitis and allergic contact dermatitis. Exp Dermatol. 2011;20:789–794. doi: 10.1111/j.1600-0625.2011.01323.x. [DOI] [PubMed] [Google Scholar]
  70. Riis J.L., Johansen C., Vestergaard C., Otkjaer K., Kragballe K., Iversen L. CCL27 expression is regulated by both p38 MAPK and IKKβ signalling pathways. Cytokine. 2011;56:699–707. doi: 10.1016/j.cyto.2011.09.007. [DOI] [PubMed] [Google Scholar]
  71. Scanlon K.M., Hawksworth R.J., Lane S.J., Mahon B.P. IL-17A induces CCL28, supporting the chemotaxis of IgE-secreting B cells. Int Arch Allergy Immunol. 2011;156:51–61. doi: 10.1159/000322178. [DOI] [PubMed] [Google Scholar]
  72. Shirakawa A.K., Nagakubo D., Hieshima K., Nakayama T., Jin Z., Yoshie O. 1,25-dihydroxyvitamin D3 induces CCR10 expression in terminally differentiating human B cells. J Immunol. 2008;180:2786–2795. doi: 10.4049/jimmunol.180.5.2786. [DOI] [PubMed] [Google Scholar]
  73. Sigmundsdottir H., Pan J., Debes G.F., Alt C., Habtezion A., Soler D., Butcher E.C. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat Immunol. 2007;8:285–293. doi: 10.1038/ni1433. [DOI] [PubMed] [Google Scholar]
  74. Simonetti O., Goteri G., Lucarini G., Filosa A., Pieramici T., Rubini C., Biagini G., Offidani A. Potential role of CCL27 and CCR10 expression in melanoma progression and immune escape. Eur J Cancer. 2006;42:1181–1187. doi: 10.1016/j.ejca.2006.01.043. [DOI] [PubMed] [Google Scholar]
  75. Sisirak V., Vey N., Vanbervliet B., Duhen T., Puisieux I., Homey B., Bowman E.P., Trinchieri G., Dubois B., Kaiserlian D., et al. CCR6/CCR10-mediated plasmacytoid dendritic cell recruitment to inflamed epithelia after instruction in lymphoid tissues. Blood. 2011;118:5130–5140. doi: 10.1182/blood-2010-07-295626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Soler D., Humphreys T.L., Spinola S.M., Campbell J.J. CCR4 versus CCR10 in human cutaneous TH lymphocyte trafficking. Blood. 2003;101:1677–1682. doi: 10.1182/blood-2002-07-2348. [DOI] [PubMed] [Google Scholar]
  77. Song T.W., Sohn M.H., Kim E.S., Kim K.W., Kim K.E. Increased serum thymus and activation-regulated chemokine and cutaneous T cell-attracting chemokine levels in children with atopic dermatitis. Clin Exp Allergy. 2006;36:346–351. doi: 10.1111/j.1365-2222.2006.02430.x. [DOI] [PubMed] [Google Scholar]
  78. Staton T.L., Habtezion A., Winslow M.M., Sato T., Love P.E., Butcher E.C. CD8+ recent thymic emigrants home to and efficiently repopulate the small intestine epithelium. Nat Immunol. 2006;7:482–488. doi: 10.1038/ni1319. [DOI] [PubMed] [Google Scholar]
  79. Sundström P., Lundin S.B., Nilsson L.A., Quiding-Järbrink M. Human IgA-secreting cells induced by intestinal, but not systemic, immunization respond to CCL25 (TECK) and CCL28 (MEC) Eur J Immunol. 2008;38:3327–3338. doi: 10.1002/eji.200838506. [DOI] [PubMed] [Google Scholar]
  80. Suzuki K., Fagarasan S. Diverse regulatory pathways for IgA synthesis in the gut. Mucosal Immunol. 2009;2:468–471. doi: 10.1038/mi.2009.107. [DOI] [PubMed] [Google Scholar]
  81. Tilloy F., Treiner E., Park S.H., Garcia C., Lemonnier F., de la Salle H., Bendelac A., Bonneville M., Lantz O. An invariant T cell receptor alpha chain defines a novel TAP-independent major histocompatibility complex class Ib-restricted alpha/beta T cell subpopulation in mammals. J Exp Med. 1999;189:1907–1921. doi: 10.1084/jem.189.12.1907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Treiner E., Duban L., Bahram S., Radosavljevic M., Wanner V., Tilloy F., Affaticati P., Gilfillan S., Lantz O. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature. 2003;422:164–169. doi: 10.1038/nature01433. [DOI] [PubMed] [Google Scholar]
  83. Trifari S., Kaplan C.D., Tran E.H., Crellin N.K., Spits H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol. 2009;10:864–871. doi: 10.1038/ni.1770. [DOI] [PubMed] [Google Scholar]
  84. Tubo N.J., McLachlan J.B., Campbell J.J. Chemokine receptor requirements for epidermal T-cell trafficking. Am J Pathol. 2011;178:2496–2503. doi: 10.1016/j.ajpath.2011.02.031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Turchinovich G., Hayday A.C. Skint-1 identifies a common molecular mechanism for the development of interferon-γ-secreting versus interleukin-17-secreting γ δ T cells. Immunity. 2011;35:59–68. doi: 10.1016/j.immuni.2011.04.018. [DOI] [PubMed] [Google Scholar]
  86. Vestergaard C., Deleuran M., Gesser B., Grønhøj Larsen C. Expression of the T-helper 2-specific chemokine receptor CCR4 on CCR10-positive lymphocytes in atopic dermatitis skin but not in psoriasis skin. Br J Dermatol. 2003;149:457–463. doi: 10.1046/j.1365-2133.2003.05505.x. [DOI] [PubMed] [Google Scholar]
  87. Vestergaard C., Johansen C., Otkjaer K., Deleuran M., Iversen L. Tumor necrosis factor-alpha-induced CTACK/CCL27 (cutaneous T-cell-attracting chemokine) production in keratinocytes is controlled by nuclear factor kappaB. Cytokine. 2005;29:49–55. doi: 10.1016/j.cyto.2004.09.008. [DOI] [PubMed] [Google Scholar]
  88. Wang W., Soto H., Oldham E.R., Buchanan M.E., Homey B., Catron D., Jenkins N., Copeland N.G., Gilbert D.J., Nguyen N., et al. Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2) J Biol Chem. 2000;275:22313–22323. doi: 10.1074/jbc.M001461200. [DOI] [PubMed] [Google Scholar]
  89. Watkins H.R., Lapp C.A., Hanes P.J., Dickinson D.P., Volkmann K.R., Newman C.L., Konzelman J.L. CCL28 effects on periodontal pathogens. J Periodontol. 2007;78:2356–2363. doi: 10.1902/jop.2007.060504. [DOI] [PubMed] [Google Scholar]
  90. Wilson E., Butcher E.C. CCL28 controls immunoglobulin (Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate. J Exp Med. 2004;200:805–809. doi: 10.1084/jem.20041069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Xiong N., Kang C., Raulet D.H. Positive selection of dendritic epidermal gammadelta T cell precursors in the fetal thymus determines expression of skin-homing receptors. Immunity. 2004;21:121–131. doi: 10.1016/j.immuni.2004.06.008. [DOI] [PubMed] [Google Scholar]
  92. Yamagata T., Mathis D., Benoist C. Self-reactivity in thymic double-positive cells commits cells to a CD8 alpha alpha lineage with characteristics of innate immune cells. Nat Immunol. 2004;5:597–605. doi: 10.1038/ni1070. [DOI] [PubMed] [Google Scholar]

Articles from Protein & Cell are provided here courtesy of Oxford University Press

RESOURCES