Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 May;89(5):1438–1444. doi: 10.1172/JCI115733

Clonal analysis of human tumors with M27 beta, a highly informative polymorphic X chromosomal probe.

M F Fey 1, H J Peter 1, H L Hinds 1, A Zimmermann 1, S Liechti-Gallati 1, H Gerber 1, H Studer 1, A Tobler 1
PMCID: PMC443013  PMID: 1349026

Abstract

The clonality of human tumors can be studied by X inactivation/methylation analysis in female patients heterozygous for X-linked DNA polymorphisms. We present a detailed study on clonal tumor analysis with M27 beta, a highly informative probe detecting a polymorphic X chromosomal locus, DXS255. The polymorphism detected at this locus is due to variable numbers of tandem repeats. The rate of constitutional heterozygosity detected by M27 beta was 88%. Normal tissue from gastrointestinal mucosa and thyroid showed random, hence polyclonal, patterns. Nonrandom clonal X inactivation was detected in all 22 malignant neoplasms that had been shown to be clonal by other DNA markers, such as antigen receptor gene rearrangements or clonal loss of heterozygosity at 17p and other loci. 16/48 normal blood leukocyte samples (33%) showed considerably skewed X inactivation patterns. Comparison of blood leukocytes and normal tissue indicated that in a given individual, X inactivation patterns may be tissue specific. M27 beta was used to study the clonal composition of 13 benign thyroid nodules from 12 multinodular goiters with rapid recent growth, traditionally termed "adenomas." Nine of them were clonal, whereas four nodules and tissue from a case of Graves' goiter were not, indicating that some, but not all, such thyroid nodules may represent true clonal neoplasms. The M27 beta probe permits one to study the clonal composition by the X inactivation approach of a wide variety of solid tumors from most female patients. As a control, normal tissue homologous to the tumor type of interest is preferable to DNA from blood leukocytes, since the latter may show nonrandom X inactivation patterns in a fairly high proportion of cases. M27 beta may, therefore, be of limited use for the clonal analysis of neoplasms derived from hematopoietic cells.

Full text

PDF
1438

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abrahamson G., Fraser N. J., Boyd J., Craig I., Wainscoat J. S. A highly informative X-chromosome probe, M27 beta, can be used for the determination of tumour clonality. Br J Haematol. 1990 Mar;74(3):371–372. doi: 10.1111/j.1365-2141.1990.tb02601.x. [DOI] [PubMed] [Google Scholar]
  2. Alexander J. M., Biller B. M., Bikkal H., Zervas N. T., Arnold A., Klibanski A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest. 1990 Jul;86(1):336–340. doi: 10.1172/JCI114705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnold A., Kim H. G., Gaz R. D., Eddy R. L., Fukushima Y., Byers M. G., Shows T. B., Kronenberg H. M. Molecular cloning and chromosomal mapping of DNA rearranged with the parathyroid hormone gene in a parathyroid adenoma. J Clin Invest. 1989 Jun;83(6):2034–2040. doi: 10.1172/JCI114114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arnold A., Staunton C. E., Kim H. G., Gaz R. D., Kronenberg H. M. Monoclonality and abnormal parathyroid hormone genes in parathyroid adenomas. N Engl J Med. 1988 Mar 17;318(11):658–662. doi: 10.1056/NEJM198803173181102. [DOI] [PubMed] [Google Scholar]
  5. BEUTLER E., YEH M., FAIRBANKS V. F. The normal human female as a mosaic of X-chromosome activity: studies using the gene for C-6-PD-deficiency as a marker. Proc Natl Acad Sci U S A. 1962 Jan 15;48:9–16. doi: 10.1073/pnas.48.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bartram C. R., Ludwig W. D., Hiddemann W., Lyons J., Buschle M., Ritter J., Harbott J., Fröhlich A., Janssen J. W. Acute myeloid leukemia: analysis of ras gene mutations and clonality defined by polymorphic X-linked loci. Leukemia. 1989 Apr;3(4):247–256. [PubMed] [Google Scholar]
  7. Boyd Y., Fraser N. J. Methylation patterns at the hypervariable X-chromosome locus DXS255 (M27 beta): correlation with X-inactivation status. Genomics. 1990 Jun;7(2):182–187. doi: 10.1016/0888-7543(90)90539-7. [DOI] [PubMed] [Google Scholar]
  8. Brown R. M., Fraser N. J., Brown G. K. Differential methylation of the hypervariable locus DXS255 on active and inactive X chromosomes correlates with the expression of a human X-linked gene. Genomics. 1990 Jun;7(2):215–221. doi: 10.1016/0888-7543(90)90543-4. [DOI] [PubMed] [Google Scholar]
  9. Fearon E. R., Hamilton S. R., Vogelstein B. Clonal analysis of human colorectal tumors. Science. 1987 Oct 9;238(4824):193–197. doi: 10.1126/science.2889267. [DOI] [PubMed] [Google Scholar]
  10. Fey M. F., Hesketh C., Wainscoat J. S., Gendler S., Thein S. L. Clonal allele loss in gastrointestinal cancers. Br J Cancer. 1989 May;59(5):750–754. doi: 10.1038/bjc.1989.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fey M. F., Tobler A., Stadelmann B., Hirt A., Theilkäs L., Khandjian E. W., Ridolfi-Lüthy A., Delaleu B., Weil R., Wagner H. P. Immunogenotyping with antigen receptor gene probes as a diagnostic tool in childhood acute lymphoblastic leukaemia. Eur J Haematol. 1990 Oct;45(4):215–222. doi: 10.1111/j.1600-0609.1990.tb00460.x. [DOI] [PubMed] [Google Scholar]
  12. Fey M. F., Wells R. A., Wainscoat J. S., Thein S. L. Assessment of clonality in gastrointestinal cancer by DNA fingerprinting. J Clin Invest. 1988 Nov;82(5):1532–1537. doi: 10.1172/JCI113762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fialkow P. J. Clonal origin of human tumors. Biochim Biophys Acta. 1976 Oct 12;458(3):283–321. doi: 10.1016/0304-419x(76)90003-2. [DOI] [PubMed] [Google Scholar]
  14. Flanagan J. G., Rabbitts T. H. The sequence of a human immunoglobulin epsilon heavy chain constant region gene, and evidence for three non-allelic genes. EMBO J. 1982;1(5):655–660. doi: 10.1002/j.1460-2075.1982.tb01223.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fraser N. J., Boyd Y., Brownlee G. G., Craig I. W. Multi-allelic RFLP for M27 beta, an anonymous single copy genomic clone at Xp11.3-Xcen [HGM9 provisional no. DXS255]. Nucleic Acids Res. 1987 Nov 25;15(22):9616–9616. doi: 10.1093/nar/15.22.9616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fraser N. J., Boyd Y., Craig I. Isolation and characterization of a human variable copy number tandem repeat at Xcen-p11.22. Genomics. 1989 Jul;5(1):144–148. doi: 10.1016/0888-7543(89)90099-2. [DOI] [PubMed] [Google Scholar]
  17. Goodship J., Carter J., Espanol T., Boyd Y., Malcolm S., Levinsky R. J. Carrier detection in Wiskott-Aldrich syndrome: combined use of M27 beta for X-inactivation studies and as a linked probe. Blood. 1991 Jun 15;77(12):2677–2681. [PubMed] [Google Scholar]
  18. Hendriks R. W., De Weers M., Mensink R. G., Kraakman M. E., Mollee-Versteegde I. F., Veerman A. J., Sandkuyl L. A., Schuurman R. K. Diagnosis of Wiskott-Aldrich syndrome by analysis of the X chromosome inactivation patterns in maternal leucocyte populations using the hypervariable DXS255 locus. Clin Exp Immunol. 1991 May;84(2):219–222. [PMC free article] [PubMed] [Google Scholar]
  19. Hendriks R. W., Kraakman M. E., Mensink R. G., Schuurman R. K. Differential methylation at the 5' and the 3' CCGG sites flanking the X chromosomal hypervariable DXS255 locus. Hum Genet. 1991 Nov;88(1):105–111. doi: 10.1007/BF00204939. [DOI] [PubMed] [Google Scholar]
  20. Hicks D. G., LiVolsi V. A., Neidich J. A., Puck J. M., Kant J. A. Clonal analysis of solitary follicular nodules in the thyroid. Am J Pathol. 1990 Sep;137(3):553–562. [PMC free article] [PubMed] [Google Scholar]
  21. Hodges E., Howell W. M., Boyd Y., Smith J. L. Variable X-chromosome DNA methylation patterns detected with probe M27 beta in a series of lymphoid and myeloid malignancies. Br J Haematol. 1991 Mar;77(3):315–322. doi: 10.1111/j.1365-2141.1991.tb08577.x. [DOI] [PubMed] [Google Scholar]
  22. Iannaccone P. M., Weinberg W. C., Berkwits L. A probabilistic model of mosaicism based on the histological analysis of chimaeric rat liver. Development. 1987 Feb;99(2):187–196. doi: 10.1242/dev.99.2.187. [DOI] [PubMed] [Google Scholar]
  23. Jeffreys A. J., Wilson V., Thein S. L. Individual-specific 'fingerprints' of human DNA. Nature. 1985 Jul 4;316(6023):76–79. doi: 10.1038/316076a0. [DOI] [PubMed] [Google Scholar]
  24. Knudson A. G., Jr Hereditary cancer, oncogenes, and antioncogenes. Cancer Res. 1985 Apr;45(4):1437–1443. [PubMed] [Google Scholar]
  25. Linder D., Gartler S. M. Glucose-6-phosphate dehydrogenase mosaicism: utilization as a cell marker in the study of leiomyomas. Science. 1965 Oct 1;150(3692):67–69. doi: 10.1126/science.150.3692.67. [DOI] [PubMed] [Google Scholar]
  26. Marlhens F., Delattre O., Bernard A., Olschwang S., Dutrillaux B., Thomas G. RFLP identified by the anonymous DNA segment OL VII E10 at 18q21.3 (HGM no. D18S8). Nucleic Acids Res. 1987 Feb 11;15(3):1348–1348. doi: 10.1093/nar/15.3.1348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Motokura T., Bloom T., Kim H. G., Jüppner H., Ruderman J. V., Kronenberg H. M., Arnold A. A novel cyclin encoded by a bcl1-linked candidate oncogene. Nature. 1991 Apr 11;350(6318):512–515. doi: 10.1038/350512a0. [DOI] [PubMed] [Google Scholar]
  28. Nakamura Y., Ballard L., Leppert M., O'Connell P., Lathrop G. M., Lalouel J. M., White R. Isolation and mapping of a polymorphic DNA sequence (pYNZ22) on chromosome 17p [D17S30]. Nucleic Acids Res. 1988 Jun 24;16(12):5707–5707. doi: 10.1093/nar/16.12.5707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Namba H., Matsuo K., Fagin J. A. Clonal composition of benign and malignant human thyroid tumors. J Clin Invest. 1990 Jul;86(1):120–125. doi: 10.1172/JCI114673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Namba H., Ross J. L., Goodman D., Fagin J. A. Solitary polyclonal autonomous thyroid nodule: a rare cause of childhood hyperthyroidism. J Clin Endocrinol Metab. 1991 May;72(5):1108–1112. doi: 10.1210/jcem-72-5-1108. [DOI] [PubMed] [Google Scholar]
  31. Peter H. J., Gerber H., Studer H., Becker D. V., Peterson M. E. Autonomy of growth and of iodine metabolism in hyperthyroid feline goiters transplanted onto nude mice. J Clin Invest. 1987 Aug;80(2):491–498. doi: 10.1172/JCI113097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Peter H. J., Gerber H., Studer H., Smeds S. Pathogenesis of heterogeneity in human multinodular goiter. A study on growth and function of thyroid tissue transplanted onto nude mice. J Clin Invest. 1985 Nov;76(5):1992–2002. doi: 10.1172/JCI112199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sims J. E., Tunnacliffe A., Smith W. J., Rabbitts T. H. Complexity of human T-cell antigen receptor beta-chain constant- and variable-region genes. Nature. 1984 Dec 6;312(5994):541–545. doi: 10.1038/312541a0. [DOI] [PubMed] [Google Scholar]
  34. Sklar J., Weiss L. M. Applications of antigen receptor gene rearrangements to the diagnosis and characterization of lymphoid neoplasms. Annu Rev Med. 1988;39:315–334. doi: 10.1146/annurev.me.39.020188.001531. [DOI] [PubMed] [Google Scholar]
  35. Studer H., Peter H. J., Gerber H. Natural heterogeneity of thyroid cells: the basis for understanding thyroid function and nodular goiter growth. Endocr Rev. 1989 May;10(2):125–135. doi: 10.1210/edrv-10-2-125. [DOI] [PubMed] [Google Scholar]
  36. Swallow D. M., Gendler S., Griffiths B., Kearney A., Povey S., Sheer D., Palmer R. W., Taylor-Papadimitriou J. The hypervariable gene locus PUM, which codes for the tumour associated epithelial mucins, is located on chromosome 1, within the region 1q21-24. Ann Hum Genet. 1987 Oct;51(Pt 4):289–294. doi: 10.1111/j.1469-1809.1987.tb01063.x. [DOI] [PubMed] [Google Scholar]
  37. Thomas G. A., Williams D., Williams E. D. The clonal origin of thyroid nodules and adenomas. Am J Pathol. 1989 Jan;134(1):141–147. [PMC free article] [PubMed] [Google Scholar]
  38. Thomas G. A., Williams D., Williams E. D. The demonstration of tissue clonality by X-linked enzyme histochemistry. J Pathol. 1988 Jun;155(2):101–108. doi: 10.1002/path.1711550205. [DOI] [PubMed] [Google Scholar]
  39. Vogelstein B., Fearon E. R., Hamilton S. R., Feinberg A. P. Use of restriction fragment length polymorphisms to determine the clonal origin of human tumors. Science. 1985 Feb 8;227(4687):642–645. doi: 10.1126/science.2982210. [DOI] [PubMed] [Google Scholar]
  40. Vogelstein B., Fearon E. R., Hamilton S. R., Preisinger A. C., Willard H. F., Michelson A. M., Riggs A. D., Orkin S. H. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res. 1987 Sep 15;47(18):4806–4813. [PubMed] [Google Scholar]
  41. Wainscoat J. S., Fey M. F. Assessment of clonality in human tumors: a review. Cancer Res. 1990 Mar 1;50(5):1355–1360. [PubMed] [Google Scholar]
  42. Wong Z., Wilson V., Patel I., Povey S., Jeffreys A. J. Characterization of a panel of highly variable minisatellites cloned from human DNA. Ann Hum Genet. 1987 Oct;51(Pt 4):269–288. doi: 10.1111/j.1469-1809.1987.tb01062.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES