Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jul;90(1):30–34. doi: 10.1172/JCI115852

Molecular sieving of albumin by the ascending vasa recta wall.

T L Pallone 1
PMCID: PMC443059  PMID: 1634618

Abstract

Molecular sieving of albumin by ascending vasa recta. Evidence exists to support the presence of an extravascular pool of albumin in the renal medullary interstitium. This study used microperfusion in vivo to measure the transport of 125I-labeled albumin from descending (DVR) and ascending vasa recta (AVR) to the papillary interstitium. Perfusions were performed during furosemide diuresis with a buffer containing FITC-labeled dextran (FITC-Dx) 2 x 10(6) mol wt and 125I-albumin. Perfusate albumin and collection pressure were adjusted to induce either zero transcapillary volume flux (Jv) or high volume flux. When Jv was zero, the collectate-to-perfusate ratios of FITC-Dx (RDX) and 125I-albumin (Ralb) in the DVR and AVR were identical implying that diffusive efflux of albumin was immeasurably small. In contrast, when Jv was increased, paired comparison of Ralb and RDX in the same AVR revealed a difference, 1.58 +/- 0.06 vs 1.72 +/- 0.08, respectively (P less than 0.01). AVR perfusions in hydropenic animals showed similar results, Ralb = 1.70 +/- 0.07 and RDX = 2.00 +/- 0.07 (P less than 0.01). These data suggest that albumin transport across vasa recta in vivo is likely to be governed by solvent drag. The reflection coefficient of the AVR wall to 125I-albumin is estimated to be 0.78.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bell R. D., Keyl M. J., Shrader F. R., Jones E. W., Henry L. P. Renal lymphatics: the internal distribution. Nephron. 1968;5(6):454–463. doi: 10.1159/000179655. [DOI] [PubMed] [Google Scholar]
  2. Friedman J. J., Witte S. The radial protein concentration profile in the interstitial space of the rat ileal mesentery. Microvasc Res. 1986 May;31(3):277–287. doi: 10.1016/0026-2862(86)90017-8. [DOI] [PubMed] [Google Scholar]
  3. Holliger C., Lemley K. V., Schmitt S. L., Thomas F. C., Robertson C. R., Jamison R. L. Direct determination of vasa recta blood flow in the rat renal papilla. Circ Res. 1983 Sep;53(3):401–413. doi: 10.1161/01.res.53.3.401. [DOI] [PubMed] [Google Scholar]
  4. Kriz W., Barrett J. M., Peter S. The renal vasculature: anatomical-functional aspects. Int Rev Physiol. 1976;11:1–21. [PubMed] [Google Scholar]
  5. LASSEN N. A., LONGLEY J. B., LILIENFIELD L. S. Concentration of albumin in renal papilla. Science. 1958 Sep 26;128(3326):720–721. doi: 10.1126/science.128.3326.720. [DOI] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Moffat D. B. Extravascular protein in the renal medulla. Q J Exp Physiol Cogn Med Sci. 1969 Jan;54(1):60–67. doi: 10.1113/expphysiol.1969.sp002006. [DOI] [PubMed] [Google Scholar]
  8. Nugent L. J., Jain R. K. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am J Physiol. 1984 Jan;246(1 Pt 2):H129–H137. doi: 10.1152/ajpheart.1984.246.1.H129. [DOI] [PubMed] [Google Scholar]
  9. Pallone T. L. Resistance of ascending vasa recta to transport of water. Am J Physiol. 1991 Mar;260(3 Pt 2):F303–F310. doi: 10.1152/ajprenal.1991.260.3.F303. [DOI] [PubMed] [Google Scholar]
  10. Pallone T. L. Transport of sodium chloride and water in rat ascending vasa recta. Am J Physiol. 1991 Sep;261(3 Pt 2):F519–F525. doi: 10.1152/ajprenal.1991.261.3.F519. [DOI] [PubMed] [Google Scholar]
  11. Pallone T. L., Work J., Jamison R. L. Resistance of descending vasa recta to the transport of water. Am J Physiol. 1990 Oct;259(4 Pt 2):F688–F697. doi: 10.1152/ajprenal.1990.259.4.F688. [DOI] [PubMed] [Google Scholar]
  12. Pallone T. L., Yagil Y., Jamison R. L. Effect of small-solute gradients on transcapillary fluid movement in renal inner medulla. Am J Physiol. 1989 Oct;257(4 Pt 2):F547–F553. doi: 10.1152/ajprenal.1989.257.4.F547. [DOI] [PubMed] [Google Scholar]
  13. Patlak C. S., Goldstein D. A., Hoffman J. F. The flow of solute and solvent across a two-membrane system. J Theor Biol. 1963 Nov;5(3):426–442. doi: 10.1016/0022-5193(63)90088-2. [DOI] [PubMed] [Google Scholar]
  14. Pinter G. G. Distribution of chylomicrons and albumin in dog kidney. J Physiol. 1967 Oct;192(3):761–772. doi: 10.1113/jphysiol.1967.sp008329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Renkin E. M. Multiple pathways of capillary permeability. Circ Res. 1977 Dec;41(6):735–743. doi: 10.1161/01.res.41.6.735. [DOI] [PubMed] [Google Scholar]
  16. Sanjana V. M., Johnston P. A., Deen W. M., Robertson C. R., Brenner B. M., Jamison R. L. Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney. Am J Physiol. 1975 Jun;228(6):1921–1926. doi: 10.1152/ajplegacy.1975.228.6.1921. [DOI] [PubMed] [Google Scholar]
  17. Sanjana V. M., Johnston P. A., Robertson C. R., Jamison R. L. An examination of transcapillary water flux in renal inner medulla. Am J Physiol. 1976 Aug;231(2):313–318. doi: 10.1152/ajplegacy.1976.231.2.313. [DOI] [PubMed] [Google Scholar]
  18. Schwartz M. M., Karnovsky M. J., Vehkatachalam M. A. Ultrastructural differences between rat inner medullary descending and ascending vasa recta;. Lab Invest. 1976 Aug;35(2):161–170. [PubMed] [Google Scholar]
  19. Shimamura T., Morrison A. B. Vascular permeability of the renal medullary vessels in the mouse and rat. Am J Pathol. 1973 May;71(2):155–163. [PMC free article] [PubMed] [Google Scholar]
  20. Slotkoff L. M., Lilienfield L. S. Extravascular renal albumin. Am J Physiol. 1967 Feb;212(2):400–406. doi: 10.1152/ajplegacy.1967.212.2.400. [DOI] [PubMed] [Google Scholar]
  21. Venkatachalam M. A., Karnovsky M. J. Extravascular protein in the kidney. An ultrastructural study of its relation to renal peritubular capillary permeability using protein tracers. Lab Invest. 1972 Nov;27(5):435–444. [PubMed] [Google Scholar]
  22. Wilde W. S., Vorburger C. Albumin multiplier in kidney vasa recta analyzed by microspectrophotometry of T-1824. Am J Physiol. 1967 Nov;213(5):1233–1243. doi: 10.1152/ajplegacy.1967.213.5.1233. [DOI] [PubMed] [Google Scholar]
  23. Zimmerhackl B., Robertson C. R., Jamison R. L. Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously. Am J Physiol. 1985 Mar;248(3 Pt 2):F347–F353. doi: 10.1152/ajprenal.1985.248.3.F347. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES