Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jul;90(1):136–141. doi: 10.1172/JCI115826

Glomerular actions of a free radical-generated novel prostaglandin, 8-epi-prostaglandin F2 alpha, in the rat. Evidence for interaction with thromboxane A2 receptors.

K Takahashi 1, T M Nammour 1, M Fukunaga 1, J Ebert 1, J D Morrow 1, L J Roberts 2nd 1, R L Hoover 1, K F Badr 1
PMCID: PMC443072  PMID: 1386085

Abstract

8-epi-prostaglandin F2 alpha (8-epi-PGF2 alpha) and related compounds are novel prostanoid produced by a noncyclooxygenase mechanism involving lipid peroxidation. Renal ischemia-reperfusion injury increased urinary excretion of these compounds by 300% over baseline level. Intrarenal arterial infusion at 0.5, 1, and 2 micrograms/kg per min induced dose-dependent reductions in glomerular filtration rate (GFR) and renal plasma flow, with renal function ceasing at the highest dose. Micropuncture measurements (0.5 microgram/kg per min) revealed a predominant increase in afferent resistance, resulting in a decrease in transcapillary hydraulic pressure difference, and leading to reductions in single nephron GFR and plasma flow. These changes were completely abolished or reversed by a TxA2 receptor antagonist, SQ 29,548. Competitive radioligand binding studies demonstrated that 8-epi-PGF2 alpha is a potent competitor for [3H]SQ 29,548 binding to rat renal arterial smooth muscle cells (RASM) in culture. Furthermore, addition of 8-epi-PGF2 alpha to RASM or isolated glomeruli was not associated with stimulation of arachidonate cyclooxygenase products. Therefore, 8-epi-PGF2 alpha is a potent preglomerular vasoconstrictor acting principally through TxA2 receptor activation. These findings may explain, in part, the beneficial effects of antioxidant therapy and TxA2 antagonism observed in numerous models of renal injury induced by lipid peroxidation.

Full text

PDF
136

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badr K. F., Brenner B. M., Ichikawa I. Effects of leukotriene D4 on glomerular dynamics in the rat. Am J Physiol. 1987 Aug;253(2 Pt 2):F239–F243. doi: 10.1152/ajprenal.1987.253.2.F239. [DOI] [PubMed] [Google Scholar]
  2. Badr K. F., DeBoer D. K., Takahashi K., Harris R. C., Fogo A., Jacobson H. R. Glomerular responses to platelet-activating factor in the rat: role of thromboxane A2. Am J Physiol. 1989 Jan;256(1 Pt 2):F35–F43. doi: 10.1152/ajprenal.1989.256.1.F35. [DOI] [PubMed] [Google Scholar]
  3. Badr K. F., Kelley V. E., Rennke H. G., Brenner B. M. Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure. Kidney Int. 1986 Oct;30(4):474–480. doi: 10.1038/ki.1986.210. [DOI] [PubMed] [Google Scholar]
  4. Deen W. M., Troy J. L., Robertson C. R., Brenner B. M. Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient. J Clin Invest. 1973 Jun;52(6):1500–1508. doi: 10.1172/JCI107324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FUHR J., KACZMARCZYK J., KRUTTGEN C. D. Eine einfache colorimetrische Methode zur Inulinbestimmung für Nieren-Clearance-Untersuchungen bei Stoffwechselgesunden und Diabetikern. Klin Wochenschr. 1955 Aug 1;33(29-30):729–730. doi: 10.1007/BF01473295. [DOI] [PubMed] [Google Scholar]
  6. Hanasaki K., Nakano K., Kasai H., Arita H. Biochemical characterization and comparison of rat thromboxane A2/prostaglandin H2 receptors in platelets and cultured aortic smooth muscle cells. Biochem Pharmacol. 1989 Sep 15;38(18):2967–2976. doi: 10.1016/0006-2952(89)90004-x. [DOI] [PubMed] [Google Scholar]
  7. Hanasaki K., Nakano K., Kasai H., Arita H., Ohtani K., Doteuchi M. Specific receptors for thromboxane A2 in cultured vascular smooth muscle cells of rat aorta. Biochem Biophys Res Commun. 1988 Feb 15;150(3):1170–1175. doi: 10.1016/0006-291x(88)90752-8. [DOI] [PubMed] [Google Scholar]
  8. Hansson R., Jonsson O., Lundstam S., Pettersson S., Scherstén T., Waldenström J. Effects of free radical scavengers on renal circulation after ischaemia in the rabbit. Clin Sci (Lond) 1983 Dec;65(6):605–610. doi: 10.1042/cs0650605. [DOI] [PubMed] [Google Scholar]
  9. Harris R. C., Munger K. A., Badr K. F., Takahashi K. Mediation of renal vascular effects of epidermal growth factor by arachidonate metabolites. FASEB J. 1990 Apr 1;4(6):1654–1660. doi: 10.1096/fasebj.4.6.2138579. [DOI] [PubMed] [Google Scholar]
  10. Kaplan R., Aynedjian H. S., Schlondorff D., Bank N. Renal vasoconstriction caused by short-term cholesterol feeding is corrected by thromboxane antagonist or probucol. J Clin Invest. 1990 Nov;86(5):1707–1714. doi: 10.1172/JCI114895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Maddox D. A., Price D. C., Rector F. C., Jr Effects of surgery on plasma volume and salt and water excretion in rats. Am J Physiol. 1977 Dec;233(6):F600–F606. doi: 10.1152/ajprenal.1977.233.6.F600. [DOI] [PubMed] [Google Scholar]
  12. Mené P., Dunn M. J. Eicosanoids and control of mesangial cell contraction. Circ Res. 1988 May;62(5):916–925. doi: 10.1161/01.res.62.5.916. [DOI] [PubMed] [Google Scholar]
  13. Morrow J. D., Harris T. M., Roberts L. J., 2nd Noncyclooxygenase oxidative formation of a series of novel prostaglandins: analytical ramifications for measurement of eicosanoids. Anal Biochem. 1990 Jan;184(1):1–10. doi: 10.1016/0003-2697(90)90002-q. [DOI] [PubMed] [Google Scholar]
  14. Morrow J. D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., Roberts L. J., 2nd A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9383–9387. doi: 10.1073/pnas.87.23.9383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ogletree M. L., Harris D. N., Greenberg R., Haslanger M. F., Nakane M. Pharmacological actions of SQ 29,548, a novel selective thromboxane antagonist. J Pharmacol Exp Ther. 1985 Aug;234(2):435–441. [PubMed] [Google Scholar]
  16. Paller M. S., Hoidal J. R., Ferris T. F. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest. 1984 Oct;74(4):1156–1164. doi: 10.1172/JCI111524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ross R. The smooth muscle cell. II. Growth of smooth muscle in culture and formation of elastic fibers. J Cell Biol. 1971 Jul;50(1):172–186. doi: 10.1083/jcb.50.1.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1987 Oct;1(4):272–281. doi: 10.1096/fasebj.1.4.3308611. [DOI] [PubMed] [Google Scholar]
  19. Shah S. V. Oxidant mechanisms in glomerulonephritis. Semin Nephrol. 1991 May;11(3):320–326. [PubMed] [Google Scholar]
  20. Smith H. W., Finkelstein N., Aliminosa L., Crawford B., Graber M. THE RENAL CLEARANCES OF SUBSTITUTED HIPPURIC ACID DERIVATIVES AND OTHER AROMATIC ACIDS IN DOG AND MAN. J Clin Invest. 1945 May;24(3):388–404. doi: 10.1172/JCI101618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Stahl G. L., Darius H., Lefer A. M. Antagonism of thromboxane actions in the isolated perfused rat heart. Life Sci. 1986 Jun 2;38(22):2037–2041. doi: 10.1016/0024-3205(86)90152-9. [DOI] [PubMed] [Google Scholar]
  22. Stier C. T., Jr, Roberts L. J., 2nd, Wong P. Y. Renal response to 9 alpha, 11 beta-prostaglandin F2 in the rat. J Pharmacol Exp Ther. 1987 Nov;243(2):487–491. [PubMed] [Google Scholar]
  23. Takahashi K., Capdevila J., Karara A., Falck J. R., Jacobson H. R., Badr K. F. Cytochrome P-450 arachidonate metabolites in rat kidney: characterization and hemodynamic responses. Am J Physiol. 1990 Apr;258(4 Pt 2):F781–F789. doi: 10.1152/ajprenal.1990.258.4.F781. [DOI] [PubMed] [Google Scholar]
  24. Takahashi K., Schreiner G. F., Yamashita K., Christman B. W., Blair I., Badr K. F. Predominant functional roles for thromboxane A2 and prostaglandin E2 during late nephrotoxic serum glomerulonephritis in the rat. J Clin Invest. 1990 Jun;85(6):1974–1982. doi: 10.1172/JCI114661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Viets J. W., Deen W. M., Troy J. L., Brenner B. M. Determination of serum protein concentration in nanoliter blood samples using fluorescamine or 9-phthalaldehyde. Anal Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1016/0003-2697(78)90451-7. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES