Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Jul;90(1):150–155. doi: 10.1172/JCI115829

Identification of a genetic alteration in the code for bilirubin UDP-glucuronosyltransferase in the UGT1 gene complex of a Crigler-Najjar type I patient.

J K Ritter 1, M T Yeatman 1, P Ferreira 1, I S Owens 1
PMCID: PMC443074  PMID: 1634606

Abstract

Patients with Crigler-Najjar syndrome (CN) type I inherit an autosomal recessive trait for hyperbilirubinemia, which is characterized by the total absence of bilirubin UDP-glucuronosyltransferase (transferase) activity. The recent identification of two bilirubin transferase isoforms with identical carboxyl termini (Ritter, J. K., J. M. Crawford, and I. S. Owens. 1991. J. Biol. Chem. 266:1043-1047) led to the discovery of a unique locus, UGT1, which encodes a family of UDP-glucuronosyltransferase isozymes, including the two bilirubin forms (Ritter, J. K., F. Chen, Y. Y. Sheen, H. M. Tran, S. Kimura, M. T. Yeatman, and I. S. Owens. 1992. J. Biol. Chem. 267:3257-3261). The UGT1 locus features a complex of six overlapping transcriptional units encoding transferases, each of which shares the four most 3' exons (2, 3, 4, and 5) specifying the 3' half of the transferase coding regions (condons 289-533) and the entire 3' untranslated region of each mRNA. This gene model predicts that a single critical mutation in any of these four "common" exons may inactivate the entire family of encoded transferases. In agreement with this prediction, we show here that in the first CN type I individual analyzed (patient F.B.), a 13-bp deletion has occurred in exon 2. Analysis of product generated by the polymerase chain reaction and genomic DNA demonstrated that F.B. is homozygous for the defective allele (UGT1*FB), and that the consanguineous parents are both heterozygotic at this locus. The mutation is predicted to result in the synthesis of severely truncated bilirubin transferase isozymes that are lacking a highly conserved sequence in the carboxyl-terminus and the characteristic membrane (endoplasmic reticulum)-anchoring segment of the protein molecule.

Full text

PDF
150

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe N., Abe E., Yuasa A. Purification and properties of 5-hydroxytryptamine UDP-glucuronyltransferase from rat liver microsomes. J Biochem. 1988 Sep;104(3):421–426. doi: 10.1093/oxfordjournals.jbchem.a122483. [DOI] [PubMed] [Google Scholar]
  2. Arias I. M., Gartner L. M., Cohen M., Ezzer J. B., Levi A. J. Chronic nonhemolytic unconjugated hyperbilirubinemia with glucuronyl transferase deficiency. Clinical, biochemical, pharmacologic and genetic evidence for heterogeneity. Am J Med. 1969 Sep;47(3):395–409. doi: 10.1016/0002-9343(69)90224-1. [DOI] [PubMed] [Google Scholar]
  3. Bloomer J. R., Berk P. D., Howe R. B. Hepatic clearance of unconjugated bilirubin in cholestatic liver diseases. Am J Dig Dis. 1974 Jan;19(1):9–14. doi: 10.1007/BF01073348. [DOI] [PubMed] [Google Scholar]
  4. CHILDS B., SIDBURY J. B., MIGEON C. J. Glucuronic acid conjugation by patients with familial nonhemolytic jaundice and their relatives. Pediatrics. 1959 May;23(5):903–913. [PubMed] [Google Scholar]
  5. CRIGLER J. F., Jr, NAJJAR V. A. Congenital familial nonhemolytic jaundice with kernicterus. Pediatrics. 1952 Aug;10(2):169–180. [PubMed] [Google Scholar]
  6. Chowdhury J. R., Chowdhury N. R., Gärtner U., Wolkoff A. W., Arias I. M. Bilirubin diglucuronide formation in intact rats and in isolated Gunn rat liver. J Clin Invest. 1982 Mar;69(3):595–603. doi: 10.1172/JCI110486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chowdhury J. R., Chowdhury N. R., Wu G., Shouval R., Arias I. M. Bilirubin mono- and diglucuronide formation by human liver in vitro: assay by high-pressure liquid chromatography. Hepatology. 1981 Nov-Dec;1(6):622–627. doi: 10.1002/hep.1840010610. [DOI] [PubMed] [Google Scholar]
  8. Foliot A., Ploussard J. P., Housset E., Christoforov Breast milk jaundice: in vitro inhibition of rat liver bilirubin-uridine diphosphate glucuronyltransferase activity and Z protein-bromosulfophthalein binding by human breast milk. Pediatr Res. 1976 Jun;10(6):594–598. doi: 10.1203/00006450-197606000-00007. [DOI] [PubMed] [Google Scholar]
  9. Harding D., Fournel-Gigleux S., Jackson M. R., Burchell B. Cloning and substrate specificity of a human phenol UDP-glucuronosyltransferase expressed in COS-7 cells. Proc Natl Acad Sci U S A. 1988 Nov;85(22):8381–8385. doi: 10.1073/pnas.85.22.8381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Harding D., Jeremiah S. J., Povey S., Burchell B. Chromosomal mapping of a human phenol UDP-glucuronosyltransferase, GNT1. Ann Hum Genet. 1990 Jan;54(Pt 1):17–21. doi: 10.1111/j.1469-1809.1990.tb00356.x. [DOI] [PubMed] [Google Scholar]
  11. Iyanagi T., Haniu M., Sogawa K., Fujii-Kuriyama Y., Watanabe S., Shively J. E., Anan K. F. Cloning and characterization of cDNA encoding 3-methylcholanthrene inducible rat mRNA for UDP-glucuronosyltransferase. J Biol Chem. 1986 Nov 25;261(33):15607–15614. [PubMed] [Google Scholar]
  12. Iyanagi T., Watanabe T., Uchiyama Y. The 3-methylcholanthrene-inducible UDP-glucuronosyltransferase deficiency in the hyperbilirubinemic rat (Gunn rat) is caused by a -1 frameshift mutation. J Biol Chem. 1989 Dec 15;264(35):21302–21307. [PubMed] [Google Scholar]
  13. Keen J., Lester D., Inglehearn C., Curtis A., Bhattacharya S. Rapid detection of single base mismatches as heteroduplexes on Hydrolink gels. Trends Genet. 1991 Jan;7(1):5–5. doi: 10.1016/0168-9525(91)90004-a. [DOI] [PubMed] [Google Scholar]
  14. Ostrow J. D., Murphy N. H. Isolation and properties of conjugated bilirubin from bile. Biochem J. 1970 Nov;120(2):311–327. doi: 10.1042/bj1200311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ritter J. K., Chen F., Sheen Y. Y., Lubet R. A., Owens I. S. Two human liver cDNAs encode UDP-glucuronosyltransferases with 2 log differences in activity toward parallel substrates including hyodeoxycholic acid and certain estrogen derivatives. Biochemistry. 1992 Apr 7;31(13):3409–3414. doi: 10.1021/bi00128a015. [DOI] [PubMed] [Google Scholar]
  16. Ritter J. K., Chen F., Sheen Y. Y., Tran H. M., Kimura S., Yeatman M. T., Owens I. S. A novel complex locus UGT1 encodes human bilirubin, phenol, and other UDP-glucuronosyltransferase isozymes with identical carboxyl termini. J Biol Chem. 1992 Feb 15;267(5):3257–3261. [PubMed] [Google Scholar]
  17. Ritter J. K., Crawford J. M., Owens I. S. Cloning of two human liver bilirubin UDP-glucuronosyltransferase cDNAs with expression in COS-1 cells. J Biol Chem. 1991 Jan 15;266(2):1043–1047. [PubMed] [Google Scholar]
  18. Ritter J. K., Sheen Y. Y., Owens I. S. Cloning and expression of human liver UDP-glucuronosyltransferase in COS-1 cells. 3,4-catechol estrogens and estriol as primary substrates. J Biol Chem. 1990 May 15;265(14):7900–7906. [PubMed] [Google Scholar]
  19. Robertson K. J., Clarke D., Sutherland L., Wooster R., Coughtrie M. W., Burchell B. Investigation of the molecular basis of the genetic deficiency of UDP-glucuronosyltransferase in Crigler-Najjar syndrome. J Inherit Metab Dis. 1991;14(4):563–579. doi: 10.1007/BF01797927. [DOI] [PubMed] [Google Scholar]
  20. Roy Chowdhury N., Gross F., Moscioni A. D., Kram M., Arias I. M., Roy Chowdhury J. Isolation of multiple normal and functionally defective forms of uridine diphosphate-glucuronosyltransferase from inbred Gunn rats. J Clin Invest. 1987 Feb;79(2):327–334. doi: 10.1172/JCI112816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SCHMID R., AXELROD J., HAMMAKER L., SWARM R. L. Congenital jaundice in rats, due to a defect in glucuronide formation. J Clin Invest. 1958 Aug;37(8):1123–1130. doi: 10.1172/JCI103702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SZABO L., EBREY P. STUDIES ON THE INHERITANCE OF CRIGLER--NAJJAR'S SYNDROME BY THE MENTHOL TEST. Acta Paediatr Acad Sci Hung. 1963;4:153–158. [PubMed] [Google Scholar]
  23. Sato H., Aono S., Kashiwamata S., Koiwai O. Genetic defect of bilirubin UDP-glucuronosyltransferase in the hyperbilirubinemic Gunn rat. Biochem Biophys Res Commun. 1991 Jun 28;177(3):1161–1164. doi: 10.1016/0006-291x(91)90661-p. [DOI] [PubMed] [Google Scholar]
  24. Sato H., Koiwai O., Tanabe K., Kashiwamata S. Isolation and sequencing of rat liver bilirubin UDP-glucuronosyltransferase cDNA: possible alternate splicing of a common primary transcript. Biochem Biophys Res Commun. 1990 May 31;169(1):260–264. doi: 10.1016/0006-291x(90)91462-2. [DOI] [PubMed] [Google Scholar]
  25. Tephly T. R., Burchell B. UDP-glucuronosyltransferases: a family of detoxifying enzymes. Trends Pharmacol Sci. 1990 Jul;11(7):276–279. doi: 10.1016/0165-6147(90)90008-v. [DOI] [PubMed] [Google Scholar]
  26. Watkins J. B., Klaassen C. D. Induction of UDP-glucuronosyltransferase activities in Gunn, heterozygous, and Wistar rat livers by pregnenolone-16 alpha-carbonitrile. Drug Metab Dispos. 1982 Nov-Dec;10(6):590–594. [PubMed] [Google Scholar]
  27. de Morais S. M., Wells P. G. Deficiency in bilirubin UDP-glucuronyl transferase as a genetic determinant of acetaminophen toxicity. J Pharmacol Exp Ther. 1988 Oct;247(1):323–331. [PubMed] [Google Scholar]
  28. elAwady M., Chowdhury J. R., Kesari K., van Es H., Jansen P. L., Lederstein M., Arias I. M., Chowdhury N. R. Mechanism of the lack of induction of UDP-glucuronosyltransferase activity in Gunn rats by 3-methylcholanthrene. Identification of a truncated enzyme. J Biol Chem. 1990 Jun 25;265(18):10752–10758. [PubMed] [Google Scholar]
  29. van Es H. H., Goldhoorn B. G., Paul-Abrahamse M., Elferink R. P., Jansen P. L. Immunochemical analysis of uridine diphosphate-glucuronosyltransferase in four patients with the Crigler-Najjar syndrome type I. J Clin Invest. 1990 Apr;85(4):1199–1205. doi: 10.1172/JCI114553. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES