Abstract
Adenine nucleotides speed structural and functional recovery when administered after experimental renal injury in the rat and stimulate proliferation of kidney epithelial cells. As cell migration is a component of renal regeneration after acute tubular necrosis, we have used an in vitro model of wound healing to study this process. High density, quiescent monkey kidney epithelial cultures were wounded by mechanically scraping away defined regions of the monolayer to simulate the effect of cell loss after tubular necrosis and the number of cells that migrated into the denuded area was counted. Migration was independent of cell proliferation. Provision of adenosine, adenine nucleotides, or cyclic AMP increased the number of migrating cells and accelerated repair of the wound. Other purine and pyrimidine nucleotides were not effective. Arginine-glycine-aspartic acid-serine peptide, which blocks the binding of extracellular fibronectin to its cell surface receptor, completely inhibited migration in the presence or absence of ADP. Very low concentrations of epidermal growth factor (K0.5 approximately 0.3 ng/ml) stimulated migration, whereas transforming growth factor-beta 2 was inhibitory (Ki approximately 0.2 ng/ml). Thus, adenosine and/or adenine nucleotides released from injured or dying renal cells, or administered exogenously, may stimulate surviving cells in the wounded nephron to migrate along the basement membrane, thereby rapidly restoring tubular structure and function.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams D. H., Hathaway M., Shaw J., Burnett D., Elias E., Strain A. J. Transforming growth factor-beta induces human T lymphocyte migration in vitro. J Immunol. 1991 Jul 15;147(2):609–612. [PubMed] [Google Scholar]
- Azizkhan R. G., Azizkhan J. C., Zetter B. R., Folkman J. Mast cell heparin stimulates migration of capillary endothelial cells in vitro. J Exp Med. 1980 Oct 1;152(4):931–944. doi: 10.1084/jem.152.4.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bade E. G., Feindler S. Liver epithelial cell migration induced by epidermal growth factor or transforming growth factor alpha is associated with changes in the gene expression of secreted proteins. In Vitro Cell Dev Biol. 1988 Feb;24(2):149–154. doi: 10.1007/BF02623892. [DOI] [PubMed] [Google Scholar]
- Bade E. G., Nitzgen B. Extracellular matrix (ECM) modulates the EGF-induced migration of liver epithelial cells in serum-free, hormone-supplemented medium. In Vitro Cell Dev Biol. 1985 Apr;21(4):245–248. doi: 10.1007/BF02620936. [DOI] [PubMed] [Google Scholar]
- Barrandon Y., Green H. Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-alpha and epidermal growth factor. Cell. 1987 Sep 25;50(7):1131–1137. doi: 10.1016/0092-8674(87)90179-6. [DOI] [PubMed] [Google Scholar]
- Bellas R. E., Bendori R., Farmer S. R. Epidermal growth factor activation of vinculin and beta 1-integrin gene transcription in quiescent Swiss 3T3 cells. Regulation through a protein kinase C-independent pathway. J Biol Chem. 1991 Jun 25;266(18):12008–12014. [PubMed] [Google Scholar]
- Coimbra T. M., Cieslinski D. A., Humes H. D. Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol. 1990 Sep;259(3 Pt 2):F438–F443. doi: 10.1152/ajprenal.1990.259.3.F438. [DOI] [PubMed] [Google Scholar]
- Colman R. W. Platelet activation: role of an ADP receptor. Semin Hematol. 1986 Apr;23(2):119–128. [PubMed] [Google Scholar]
- Cuppage F. E., Tate A. Repair of the nephron following injury with mercuric chloride. Am J Pathol. 1967 Sep;51(3):405–429. [PMC free article] [PubMed] [Google Scholar]
- Deuel T. F., Kawahara R. S., Mustoe T. A., Pierce A. F. Growth factors and wound healing: platelet-derived growth factor as a model cytokine. Annu Rev Med. 1991;42:567–584. doi: 10.1146/annurev.me.42.020191.003031. [DOI] [PubMed] [Google Scholar]
- Geimer P., Bade E. G. The epidermal growth factor-induced migration of rat liver epithelial cells is associated with a transient inhibition of DNA synthesis. J Cell Sci. 1991 Oct;100(Pt 2):349–355. doi: 10.1242/jcs.100.2.349. [DOI] [PubMed] [Google Scholar]
- Gherardi E., Gray J., Stoker M., Perryman M., Furlong R. Purification of scatter factor, a fibroblast-derived basic protein that modulates epithelial interactions and movement. Proc Natl Acad Sci U S A. 1989 Aug;86(15):5844–5848. doi: 10.1073/pnas.86.15.5844. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinnell F., Toda K., Takashima A. Activation of keratinocyte fibronectin receptor function during cutaneous wound healing. J Cell Sci Suppl. 1987;8:199–209. doi: 10.1242/jcs.1987.supplement_8.11. [DOI] [PubMed] [Google Scholar]
- Guo M., Kim L. T., Akiyama S. K., Gralnick H. R., Yamada K. M., Grinnell F. Altered processing of integrin receptors during keratinocyte activation. Exp Cell Res. 1991 Aug;195(2):315–322. doi: 10.1016/0014-4827(91)90379-9. [DOI] [PubMed] [Google Scholar]
- Haagsma B. H., Pound A. W. Mercuric chloride-induced tubulonecrosis in the rat kidney: the recovery phase. Br J Exp Pathol. 1980 Jun;61(3):229–241. [PMC free article] [PubMed] [Google Scholar]
- Hanks S. K., Armour R., Baldwin J. H., Maldonado F., Spiess J., Holley R. W. Amino acid sequence of the BSC-1 cell growth inhibitor (polyergin) deduced from the nucleotide sequence of the cDNA. Proc Natl Acad Sci U S A. 1988 Jan;85(1):79–82. doi: 10.1073/pnas.85.1.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holley R. W., Armour R., Baldwin J. H., Brown K. D., Yeh Y. C. Density-dependent regulation of growth of BSC-1 cells in cell culture: control of growth by serum factors. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5046–5050. doi: 10.1073/pnas.74.11.5046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humes H. D., Cieslinski D. A., Coimbra T. M., Messana J. M., Galvao C. Epidermal growth factor enhances renal tubule cell regeneration and repair and accelerates the recovery of renal function in postischemic acute renal failure. J Clin Invest. 1989 Dec;84(6):1757–1761. doi: 10.1172/JCI114359. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joyce N. C., Meklir B., Neufeld A. H. In vitro pharmacologic separation of corneal endothelial migration and spreading responses. Invest Ophthalmol Vis Sci. 1990 Sep;31(9):1816–1826. [PubMed] [Google Scholar]
- Kartha S., Bradham D. M., Grotendorst G. R., Toback F. G. Kidney epithelial cells express c-sis protooncogene and secrete PDGF-like protein. Am J Physiol. 1988 Oct;255(4 Pt 2):F800–F806. doi: 10.1152/ajprenal.1988.255.4.F800. [DOI] [PubMed] [Google Scholar]
- Kartha S., Toback F. G. Purine nucleotides stimulate DNA synthesis in kidney epithelial cells in culture. Am J Physiol. 1985 Dec;249(6 Pt 2):F967–F972. doi: 10.1152/ajprenal.1985.249.6.F967. [DOI] [PubMed] [Google Scholar]
- Lyons-Giordano B., Brinker J. M., Kefalides N. A. The effect of heparin on fibronectin and thrombospondin synthesis and mRNA levels in cultured human endothelial cells. Exp Cell Res. 1990 Jan;186(1):39–46. doi: 10.1016/0014-4827(90)90207-q. [DOI] [PubMed] [Google Scholar]
- Martin T. E., Barghusen S. C., Leser G. P., Spear P. G. Redistribution of nuclear ribonucleoprotein antigens during herpes simplex virus infection. J Cell Biol. 1987 Nov;105(5):2069–2082. doi: 10.1083/jcb.105.5.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills D. C., Figures W. R., Scearce L. M., Stewart G. J., Colman R. F., Colman R. W. Two mechanisms for inhibition of ADP-induced platelet shape change by 5'-p-fluorosulfonylbenzoyladenosine. Conversion to adenosine, and covalent modification at an ADP binding site distinct from that which inhibits adenylate cyclase. J Biol Chem. 1985 Jul 5;260(13):8078–8083. [PubMed] [Google Scholar]
- Miyata K., Murao M., Sawa M., Tanishima T. New wound-healing model using cultured corneal endothelial cells. 1. Quantitative study of healing process. Jpn J Ophthalmol. 1990;34(3):257–266. [PubMed] [Google Scholar]
- Müller G., Behrens J., Nussbaumer U., Böhlen P., Birchmeier W. Inhibitory action of transforming growth factor beta on endothelial cells. Proc Natl Acad Sci U S A. 1987 Aug;84(16):5600–5604. doi: 10.1073/pnas.84.16.5600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakai A., Kartha S., Sakurai A., Toback F. G., DeGroot L. J. A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Mol Endocrinol. 1990 Oct;4(10):1438–1443. doi: 10.1210/mend-4-10-1438. [DOI] [PubMed] [Google Scholar]
- Norman J., Tsau Y. K., Bacay A., Fine L. G. Epidermal growth factor accelerates functional recovery from ischaemic acute tubular necrosis in the rat: role of the epidermal growth factor receptor. Clin Sci (Lond) 1990 May;78(5):445–450. doi: 10.1042/cs0780445. [DOI] [PubMed] [Google Scholar]
- Pepper M. S., Belin D., Montesano R., Orci L., Vassalli J. D. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol. 1990 Aug;111(2):743–755. doi: 10.1083/jcb.111.2.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pukac L. A., Castellot J. J., Jr, Wright T. C., Jr, Caleb B. L., Karnovsky M. J. Heparin inhibits c-fos and c-myc mRNA expression in vascular smooth muscle cells. Cell Regul. 1990 Apr;1(5):435–443. doi: 10.1091/mbc.1.5.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raghow R. Role of transforming growth factor-beta in repair and fibrosis. Chest. 1991 Mar;99(3 Suppl):61S–65S. doi: 10.1378/chest.99.3_supplement.61s. [DOI] [PubMed] [Google Scholar]
- Roberts A. B., Flanders K. C., Heine U. I., Jakowlew S., Kondaiah P., Kim S. J., Sporn M. B. Transforming growth factor-beta: multifunctional regulator of differentiation and development. Philos Trans R Soc Lond B Biol Sci. 1990 Mar 12;327(1239):145–154. doi: 10.1098/rstb.1990.0050. [DOI] [PubMed] [Google Scholar]
- Rothe M., Falanga V. Growth factors. Their biology and promise in dermatologic diseases and tissue repair. Arch Dermatol. 1989 Oct;125(10):1390–1398. doi: 10.1001/archderm.125.10.1390. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E. Integrins. J Clin Invest. 1991 Jan;87(1):1–5. doi: 10.1172/JCI114957. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruoslahti E., Pierschbacher M. D. New perspectives in cell adhesion: RGD and integrins. Science. 1987 Oct 23;238(4826):491–497. doi: 10.1126/science.2821619. [DOI] [PubMed] [Google Scholar]
- Ruoslahti E., Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991 Mar 8;64(5):867–869. doi: 10.1016/0092-8674(91)90308-l. [DOI] [PubMed] [Google Scholar]
- Sato Y., Rifkin D. B. Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol. 1988 Sep;107(3):1199–1205. doi: 10.1083/jcb.107.3.1199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stracke M. L., Kohn E. C., Aznavoorian S. A., Wilson L. L., Salomon D., Krutzsch H. C., Liotta L. A., Schiffmann E. Insulin-like growth factors stimulate chemotaxis in human melanoma cells. Biochem Biophys Res Commun. 1988 Jun 30;153(3):1076–1083. doi: 10.1016/s0006-291x(88)81338-x. [DOI] [PubMed] [Google Scholar]
- Sukhatme V. P., Kartha S., Toback F. G., Taub R., Hoover R. G., Tsai-Morris C. H. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res. 1987 Sep-Oct;1(4):343–355. [PubMed] [Google Scholar]
- Toback F. G. Induction of growth in kidney epithelial cells in culture by Na+. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6654–6656. doi: 10.1073/pnas.77.11.6654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Toback F. G. Regeneration after acute tubular necrosis. Kidney Int. 1992 Jan;41(1):226–246. doi: 10.1038/ki.1992.32. [DOI] [PubMed] [Google Scholar]
- Toback F. G., Walsh-Reitz M. M., Mendley S. R., Kartha S. Kidney epithelial cells release growth factors in response to extracellular signals. Pediatr Nephrol. 1990 Jul;4(4):363–371. doi: 10.1007/BF00862521. [DOI] [PubMed] [Google Scholar]
- Verrier B., Müller D., Bravo R., Müller R. Wounding a fibroblast monolayer results in the rapid induction of the c-fos proto-oncogene. EMBO J. 1986 May;5(5):913–917. doi: 10.1002/j.1460-2075.1986.tb04303.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh-Reitz M. M., Toback F. G., Holley R. W. Cell growth and net Na+ flux are inhibited by a protein produced by kidney epithelial cells in culture. Proc Natl Acad Sci U S A. 1984 Feb;81(3):793–796. doi: 10.1073/pnas.81.3.793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walsh-Reitz M. M., Toback F. G. Phenol red inhibits growth of renal epithelial cells. Am J Physiol. 1992 Apr;262(4 Pt 2):F687–F691. doi: 10.1152/ajprenal.1992.262.4.F687. [DOI] [PubMed] [Google Scholar]
- Whitby D. J., Ferguson M. W. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol. 1991 Sep;147(1):207–215. doi: 10.1016/s0012-1606(05)80018-1. [DOI] [PubMed] [Google Scholar]
- Yang E. Y., Moses H. L. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J Cell Biol. 1990 Aug;111(2):731–741. doi: 10.1083/jcb.111.2.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yayon A., Klagsbrun M., Esko J. D., Leder P., Ornitz D. M. Cell surface, heparin-like molecules are required for binding of basic fibroblast growth factor to its high affinity receptor. Cell. 1991 Feb 22;64(4):841–848. doi: 10.1016/0092-8674(91)90512-w. [DOI] [PubMed] [Google Scholar]

