Abstract
Thiazide diuretics inhibit Na+ and stimulate Ca2+ absorption in renal distal convoluted tubules. Experiments were performed on immortalized mouse distal convoluted tubule (MDCT) cells to determine the mechanism underlying the dissociation of sodium from calcium transport and the stimulation of calcium absorption induced by thiazide diuretics. Control rates of 22Na+ uptake averaged 272 +/- 35 nmol min-1 mg protein-1 and were inhibited 40% by chlorothiazide (CTZ, 10(-4) M). Control rates of 36Cl- uptake averaged 340 +/- 50 nmol min-1 mg protein-1 and were inhibited 50% by CTZ. CTZ stimulated 45Ca2+ uptake by 45% from resting levels of 2.86 +/- 0.26 nmol min-1 mg protein-1. Bumetanide (10(-4) M) had no effect on 22Na+, 36Cl-, or 45Ca2+ uptake. Control levels of intracellular calcium activity ([Ca2+]i) averaged 91 +/- 12 nM. CTZ elicited concentration-dependent increases of [Ca2+]i to a maximum of 654 +/- 31 nM at 10(-4) M. CTZ reduced intracellular chloride activity ([Cl-]i), as determined with the chloride-sensitive fluorescent dye 6-methoxy-N-(3-sulfopropyl)quinolinium. The chloride channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 10(-5) M) abolished the effect of CTZ on [Cl-]i. NPPB also blocked CTZ-induced increases of 45Ca2+. Resting membrane voltage, measured in cells loaded with the potential-sensitive dye 3,3'-dihexyloxacarbocyanine iodide [DiOC6(3)], averaged -72 +/- 2 mV. CTZ hyperpolarized cells in a concentration-dependent and reversible manner. At 10(-4) M, CTZ hyperpolarized MDCT cells by 20.4 +/- 7.2 mV. Reduction of extracellular Cl- or addition of NPPB abolished CTZ-induced hyperpolarization. Direct membrane hyperpolarization increased 45Ca2+ uptake whereas depolarization inhibited 45Ca2+ uptake. CTZ-stimulated 45Ca2+ uptake was inhibited by the Ca2+ channel blocker nifedipine (10(-5) M). We conclude that thiazide diuretics block cellular chloride entry mediated by apical membrane NaCl cotransport. Intracellular chloride, which under control conditions is above its equilibrium value, exits the cell through NPPB-sensitive chloride channels. This decrease of intracellular chloride hyperpolarizes MDCT cells and stimulates Ca2+ entry by apical membrane, dihydropyridine-sensitive Ca2+ channels.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- A standard nomenclature for structures of the kidney. The Renal Commission of the International Union of Physiological Sciences (IUPS). Am J Physiol. 1988 Jan;254(1 Pt 2):F1–F8. doi: 10.1152/ajprenal.1988.254.1.F1. [DOI] [PubMed] [Google Scholar]
- Allen M. L., Nakao A., Sonnenburg W. K., Burnatowska-Hledin M., Spielman W. S., Smith W. L. Immunodissection of cortical and medullary thick ascending limb cells from rabbit kidney. Am J Physiol. 1988 Oct;255(4 Pt 2):F704–F710. doi: 10.1152/ajprenal.1988.255.4.F704. [DOI] [PubMed] [Google Scholar]
- Arend L. J., Handler J. S., Rhim J. S., Gusovsky F., Spielman W. S. Adenosine-sensitive phosphoinositide turnover in a newly established renal cell line. Am J Physiol. 1989 Jun;256(6 Pt 2):F1067–F1074. doi: 10.1152/ajprenal.1989.256.6.F1067. [DOI] [PubMed] [Google Scholar]
- Bacskai B. J., Friedman P. A. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature. 1990 Sep 27;347(6291):388–391. doi: 10.1038/347388a0. [DOI] [PubMed] [Google Scholar]
- Bourdeau J. E., Burg M. B. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop. Am J Physiol. 1980 Aug;239(2):F121–F126. doi: 10.1152/ajprenal.1980.239.2.F121. [DOI] [PubMed] [Google Scholar]
- Brunette M. G., Chabardes D., Imbert-Teboul M., Clique A., Montégut M., Morel F. Hormone-sensitive adenylate cyclase along the nephron of genetically hypophosphatemic mice. Kidney Int. 1979 Apr;15(4):357–369. doi: 10.1038/ki.1979.47. [DOI] [PubMed] [Google Scholar]
- Chabardès D., Gagnan-Brunette M., Imbert-Teboul M., Gontcharevskaia O., Montégut M., Clique A., Morel F. Adenylate cyclase responsiveness to hormones in various portions of the human nephron. J Clin Invest. 1980 Feb;65(2):439–448. doi: 10.1172/JCI109687. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chabardès D., Imbert M., Clique A., Montégut M., Morel F. PTH sensitive adenyl cyclase activity in different segments of the rabbit nephron. Pflugers Arch. 1975;354(3):229–239. doi: 10.1007/BF00584646. [DOI] [PubMed] [Google Scholar]
- Costanzo L. S. Localization of diuretic action in microperfused rat distal tubules: Ca and Na transport. Am J Physiol. 1985 Apr;248(4 Pt 2):F527–F535. doi: 10.1152/ajprenal.1985.248.4.F527. [DOI] [PubMed] [Google Scholar]
- Costanzo L. S., Weiner I. M. On the hypocalciuric action of chlorothiazide. J Clin Invest. 1974 Sep;54(3):628–637. doi: 10.1172/JCI107800. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costanzo L. S., Windhager E. E. Calcium and sodium transport by the distal convoluted tubule of the rat. Am J Physiol. 1978 Nov;235(5):F492–F506. doi: 10.1152/ajprenal.1978.235.5.F492. [DOI] [PubMed] [Google Scholar]
- Costanzo L. S., Windhager E. E. Effects of PTH, ADH, and cyclic AMP on distal tubular Ca and Na reabsorption. Am J Physiol. 1980 Nov;239(5):F478–F485. doi: 10.1152/ajprenal.1980.239.5.F478. [DOI] [PubMed] [Google Scholar]
- Edwards B. R., Baer P. G., Sutton R. A., Dirks J. H. Micropuncture study of diuretic effects on sodium and calcium reabsorption in the dog nephron. J Clin Invest. 1973 Oct;52(10):2418–2427. doi: 10.1172/JCI107432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellison D. H., Velázquez H., Wright F. S. Thiazide-sensitive sodium chloride cotransport in early distal tubule. Am J Physiol. 1987 Sep;253(3 Pt 2):F546–F554. doi: 10.1152/ajprenal.1987.253.3.F546. [DOI] [PubMed] [Google Scholar]
- Friedman P. A. Biochemistry and pharmacology of diuretics. Semin Nephrol. 1988 Sep;8(3):198–212. [PubMed] [Google Scholar]
- Gesek F. A., Schoolwerth A. C. Hormonal interactions with the proximal Na(+)-H+ exchanger. Am J Physiol. 1990 Mar;258(3 Pt 2):F514–F521. doi: 10.1152/ajprenal.1990.258.3.F514. [DOI] [PubMed] [Google Scholar]
- Greger R., Oberleithner H., Schlatter E., Cassola A. C., Weidtke C. Chloride activity in cells of isolated perfused cortical thick ascending limbs of rabbit kidney. Pflugers Arch. 1983 Sep;399(1):29–34. doi: 10.1007/BF00652518. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Haas M. Properties and diversity of (Na-K-Cl) cotransporters. Annu Rev Physiol. 1989;51:443–457. doi: 10.1146/annurev.ph.51.030189.002303. [DOI] [PubMed] [Google Scholar]
- Hansen L. L., Schilling A. R., Wiederholt M. Effect of calcium, furosemide and chlorothiazide on net volume reabsorption and basolateral membrane potential of the distal tubule. Pflugers Arch. 1981 Jan;389(2):121–126. doi: 10.1007/BF00582101. [DOI] [PubMed] [Google Scholar]
- Kunau R. T., Jr, Weller D. R., Webb H. L. Clarification of the site of action of chlorothiazide in the rat nephron. J Clin Invest. 1975 Aug;56(2):401–407. doi: 10.1172/JCI108105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAMBERG B. A., KUHLBACK B. Effect of chlorothiazide and hydrochlorothiazide on the excretion of calcium in urine. Scand J Clin Lab Invest. 1959;11:351–357. doi: 10.3109/00365515909060464. [DOI] [PubMed] [Google Scholar]
- LAVENDER A. R., PULLMAN T. N. The renal effects of chlorothiazide. J Pharmacol Exp Ther. 1961 Dec;134:281–285. [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lajeunesse D., Brunette M. G. The hypocalciuric effect of thiazides: subcellular localization of the action. Pflugers Arch. 1991 Jan;417(5):454–462. doi: 10.1007/BF00370939. [DOI] [PubMed] [Google Scholar]
- Meng K. Mikropunktionsuntersuchungen über die saluretische Wirkung von Hydrochlorothiazid, Acetazolamid und Furosemid. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1967;257(3):355–371. [PubMed] [Google Scholar]
- Molony D. A., Reeves W. B., Andreoli T. E. Na+:K+:2Cl- cotransport and the thick ascending limb. Kidney Int. 1989 Sep;36(3):418–426. doi: 10.1038/ki.1989.211. [DOI] [PubMed] [Google Scholar]
- Morel F., Chabardès D., Imbert M. Functional segmentation of the rabbit distal tubule by microdetermination of hormone-dependent adenylate cyclase activity. Kidney Int. 1976 Mar;9(3):264–277. doi: 10.1038/ki.1976.29. [DOI] [PubMed] [Google Scholar]
- Morel F. Sites of hormone action in the mammalian nephron. Am J Physiol. 1981 Mar;240(3):F159–F164. doi: 10.1152/ajprenal.1981.240.3.F159. [DOI] [PubMed] [Google Scholar]
- Pizzonia J. H., Gesek F. A., Kennedy S. M., Coutermarsh B. A., Bacskai B. J., Friedman P. A. Immunomagnetic separation, primary culture, and characterization of cortical thick ascending limb plus distal convoluted tubule cells from mouse kidney. In Vitro Cell Dev Biol. 1991 May;27A(5):409–416. doi: 10.1007/BF02630961. [DOI] [PubMed] [Google Scholar]
- SUKI W., RECTOR F. C., Jr, SELDIN D. W. THE SITE OF ACTION OF FUROSEMIDE AND OTHER SULFONAMIDE DIURETICS IN THE DOG. J Clin Invest. 1965 Sep;44:1458–1469. doi: 10.1172/JCI105252. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shimizu T., Nakamura M., Yoshitomi K., Imai M. Interaction of trichlormethiazide or amiloride with PTH in stimulating Ca2+ absorption in rabbit CNT. Am J Physiol. 1991 Jul;261(1 Pt 2):F36–F43. doi: 10.1152/ajprenal.1991.261.1.F36. [DOI] [PubMed] [Google Scholar]
- Shimizu T., Yoshitomi K., Nakamura M., Imai M. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro. J Clin Invest. 1988 Aug;82(2):721–730. doi: 10.1172/JCI113653. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith W. L., Garcia-Perez A. Immunodissection: use of monoclonal antibodies to isolate specific types of renal cells. Am J Physiol. 1985 Jan;248(1 Pt 2):F1–F7. doi: 10.1152/ajprenal.1985.248.1.F1. [DOI] [PubMed] [Google Scholar]
- Stanton B. A. Cellular actions of thiazide diuretics in the distal tubule. J Am Soc Nephrol. 1990 Nov;1(5):832–836. doi: 10.1681/ASN.V15832. [DOI] [PubMed] [Google Scholar]
- Stokes J. B. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system. J Clin Invest. 1984 Jul;74(1):7–16. doi: 10.1172/JCI111420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tran J. M., Farrell M. A., Fanestil D. D. Effect of ions on binding of the thiazide-type diuretic metolazone to kidney membrane. Am J Physiol. 1990 Apr;258(4 Pt 2):F908–F915. doi: 10.1152/ajprenal.1990.258.4.F908. [DOI] [PubMed] [Google Scholar]
- Velázquez H., Good D. W., Wright F. S. Mutual dependence of sodium and chloride absorption by renal distal tubule. Am J Physiol. 1984 Dec;247(6 Pt 2):F904–F911. doi: 10.1152/ajprenal.1984.247.6.F904. [DOI] [PubMed] [Google Scholar]
- Velázquez H., Wright F. S. Effects of diuretic drugs on Na, Cl, and K transport by rat renal distal tubule. Am J Physiol. 1986 Jun;250(6 Pt 2):F1013–F1023. doi: 10.1152/ajprenal.1986.250.6.F1013. [DOI] [PubMed] [Google Scholar]
- Verkman A. S. Development and biological applications of chloride-sensitive fluorescent indicators. Am J Physiol. 1990 Sep;259(3 Pt 1):C375–C388. doi: 10.1152/ajpcell.1990.259.3.C375. [DOI] [PubMed] [Google Scholar]
- Verkman A. S., Takla R., Sefton B., Basbaum C., Widdicombe J. H. Quantitative fluorescence measurement of chloride transport mechanisms in phospholipid vesicles. Biochemistry. 1989 May 16;28(10):4240–4244. doi: 10.1021/bi00436a018. [DOI] [PubMed] [Google Scholar]
- Wittner M., Di Stefano A., Wangemann P., Greger R. How do loop diuretics act? Drugs. 1991;41 (Suppl 3):1–13. doi: 10.2165/00003495-199100413-00003. [DOI] [PubMed] [Google Scholar]
- Yoshitomi K., Shimizu T., Taniguchi J., Imai M. Electrophysiological characterization of rabbit distal convoluted tubule cell. Pflugers Arch. 1989 Aug;414(4):457–463. doi: 10.1007/BF00585057. [DOI] [PubMed] [Google Scholar]
- Zeidel M. L., Kikeri D., Silva P., Burrowes M., Brenner B. M. Atrial natriuretic peptides inhibit conductive sodium uptake by rabbit inner medullary collecting duct cells. J Clin Invest. 1988 Sep;82(3):1067–1074. doi: 10.1172/JCI113663. [DOI] [PMC free article] [PubMed] [Google Scholar]




