Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Aug;90(2):647–652. doi: 10.1172/JCI115906

Determinants of aortic cyclic guanosine monophosphate in hypertension induced by chronic inhibition of nitric oxide synthase.

J F Arnal 1, L Warin 1, J B Michel 1
PMCID: PMC443146  PMID: 1379615

Abstract

Nitric oxide (NO) and atrial natriuretic factor (ANF) cause vascular relaxation by generating cyclic guanosine monophosphate (cGMP) via activation of the soluble and particulate guanylate cyclases, respectively. The chronic effects of NG-nitro-L-arginine methyl ester (L-NAME), an L-arginine antagonist and NO synthase inhibitor, on the blood pressure and plasma and aortic cGMP levels of rats were tested. Wistar rats (n = 10 per group) were given doses of L-NAME (0, 1, 5, 10, 20, 50, and 100 mg/kg.d) by gavage twice a day for 4 wk. Chronic L-NAME induced a time- and dose-dependent increase in blood pressure. The total heart weight/body weight ratio did not change in any group, despite the hypertension. The plasma levels of cGMP did not change significantly in any group, and were correlated with the plasma ANF levels (r = 0.51, P less than 0.0001). Aortic cGMP decreased in negative correlation with increasing L-NAME from 0 to 10 mg/kg.d, culminating in a 10-fold drop arterial wall cGMP. The aortic cGMP content of rats in the four highest dose groups (from 10 to 100 mg/d) tended to increase slightly and was positively correlated with endogenous ANF (r = 0.48, P less than 0.002, n = 40). Intravenous L-arginine decreased arterial blood pressure and reversed the decline in aortic cGMP. Exogenous ANF and sodium nitroprusside both significantly increased aortic cGMP. Neither the arterial wall concentrations of cGMP-dependent kinase nor cAMP was changed by L-NAME. Thus, chronic blockade of NO synthase with L-NAME induces a dose-dependent increase in blood pressure and decrease in aortic cGMP. The in vivo basal aortic cGMP seems to be mainly dependent on NO synthase: soluble guanylate cyclase activity and to a minor extent on particulate guanylate cyclase activity.

Full text

PDF
647

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bouissou P., Galen F. X., Richalet J. P., Lartigue M., Devaux F., Dubray C., Atlan G. Effects of propranolol and pindolol on plasma ANP levels in humans at rest and during exercise. Am J Physiol. 1989 Aug;257(2 Pt 2):R259–R264. doi: 10.1152/ajpregu.1989.257.2.R259. [DOI] [PubMed] [Google Scholar]
  2. Cailla H. L., Vannier C. J., Delaage M. A. Guanosine 3', 5'-cyclicmonophosphate assay at 10(-15)-mole level. Anal Biochem. 1976 Jan;70(1):195–202. doi: 10.1016/s0378-5173(83)90100-x. [DOI] [PubMed] [Google Scholar]
  3. Chester A. H., O'Neil G. S., Moncada S., Tadjkarimi S., Yacoub M. H. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries. Lancet. 1990 Oct 13;336(8720):897–900. doi: 10.1016/0140-6736(90)92269-n. [DOI] [PubMed] [Google Scholar]
  4. Creager M. A., Cooke J. P., Mendelsohn M. E., Gallagher S. J., Coleman S. M., Loscalzo J., Dzau V. J. Impaired vasodilation of forearm resistance vessels in hypercholesterolemic humans. J Clin Invest. 1990 Jul;86(1):228–234. doi: 10.1172/JCI114688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dussaule J. C., Michel J. B., Auzan C., Schwartz K., Corvol P., Menard J. Effect of antihypertensive treatment on the left ventricular isomyosin profile in one-clip, two kidney hypertensive rats. J Pharmacol Exp Ther. 1986 Feb;236(2):512–518. [PubMed] [Google Scholar]
  6. Ecker T., Göbel C., Hullin R., Rettig R., Seitz G., Hofmann F. Decreased cardiac concentration of cGMP kinase in hypertensive animals. An index for cardiac vascularization? Circ Res. 1989 Nov;65(5):1361–1369. doi: 10.1161/01.res.65.5.1361. [DOI] [PubMed] [Google Scholar]
  7. Furchgott R. F., Vanhoutte P. M. Endothelium-derived relaxing and contracting factors. FASEB J. 1989 Jul;3(9):2007–2018. [PubMed] [Google Scholar]
  8. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gardes J., Poux J. M., Gonzalez M. F., Alhenc-Gelas F., Menard J. Decreased renin release and constant kallikrein secretion after injection of L-NAME in isolated perfused rat kidney. Life Sci. 1992;50(14):987–993. doi: 10.1016/0024-3205(92)90092-4. [DOI] [PubMed] [Google Scholar]
  10. Hagen E. C., Webb R. C. Coronary artery reactivity in deoxycorticosterone acetate hypertensive rats. Am J Physiol. 1984 Sep;247(3 Pt 2):H409–H414. doi: 10.1152/ajpheart.1984.247.3.H409. [DOI] [PubMed] [Google Scholar]
  11. Hamet P., Pang S. C., Tremblay J. Atrial natriuretic factor-induced egression of cyclic guanosine 3':5'-monophosphate in cultured vascular smooth muscle and endothelial cells. J Biol Chem. 1989 Jul 25;264(21):12364–12369. [PubMed] [Google Scholar]
  12. Honma M., Satoh T., Takezawa J., Ui M. An ultrasensitive method for the simultaneous determination of cyclic AMP and cyclic GMP in small-volume samples from blood and tissue. Biochem Med. 1977 Dec;18(3):257–273. doi: 10.1016/0006-2944(77)90060-6. [DOI] [PubMed] [Google Scholar]
  13. Ignarro L. J. Biological actions and properties of endothelium-derived nitric oxide formed and released from artery and vein. Circ Res. 1989 Jul;65(1):1–21. doi: 10.1161/01.res.65.1.1. [DOI] [PubMed] [Google Scholar]
  14. Kaiser L., Spickard R. C., Olivier N. B. Heart failure depresses endothelium-dependent responses in canine femoral artery. Am J Physiol. 1989 Apr;256(4 Pt 2):H962–H967. doi: 10.1152/ajpheart.1989.256.4.H962. [DOI] [PubMed] [Google Scholar]
  15. Katsuki S., Arnold W., Mittal C., Murad F. Stimulation of guanylate cyclase by sodium nitroprusside, nitroglycerin and nitric oxide in various tissue preparations and comparison to the effects of sodium azide and hydroxylamine. J Cyclic Nucleotide Res. 1977 Feb;3(1):23–35. [PubMed] [Google Scholar]
  16. Kirchheim H., Ehmke H., Persson P. Role of blood pressure in the control of renin release. Acta Physiol Scand Suppl. 1990;591:40–47. [PubMed] [Google Scholar]
  17. Konishi M., Su C. Role of endothelium in dilator responses of spontaneously hypertensive rat arteries. Hypertension. 1983 Nov-Dec;5(6):881–886. doi: 10.1161/01.hyp.5.6.881. [DOI] [PubMed] [Google Scholar]
  18. Kubo S. H., Rector T. S., Bank A. J., Williams R. E., Heifetz S. M. Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation. 1991 Oct;84(4):1589–1596. doi: 10.1161/01.cir.84.4.1589. [DOI] [PubMed] [Google Scholar]
  19. Kurtz A., Kaissling B., Busse R., Baier W. Endothelial cells modulate renin secretion from isolated mouse juxtaglomerular cells. J Clin Invest. 1991 Oct;88(4):1147–1154. doi: 10.1172/JCI115415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lincoln T. M., Cornwell T. L., Taylor A. E. cGMP-dependent protein kinase mediates the reduction of Ca2+ by cAMP in vascular smooth muscle cells. Am J Physiol. 1990 Mar;258(3 Pt 1):C399–C407. doi: 10.1152/ajpcell.1990.258.3.C399. [DOI] [PubMed] [Google Scholar]
  21. Lugnier C., Schoeffter P., Le Bec A., Strouthou E., Stoclet J. C. Selective inhibition of cyclic nucleotide phosphodiesterases of human, bovine and rat aorta. Biochem Pharmacol. 1986 May 15;35(10):1743–1751. doi: 10.1016/0006-2952(86)90333-3. [DOI] [PubMed] [Google Scholar]
  22. Menard J., Catt K. J. Measurement of renin activity, concentration and substrate in rat plasma by radioimmunoassay of angiotensin I. Endocrinology. 1972 Feb;90(2):422–430. doi: 10.1210/endo-90-2-422. [DOI] [PubMed] [Google Scholar]
  23. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  24. Moncada S., Rees D. D., Schulz R., Palmer R. M. Development and mechanism of a specific supersensitivity to nitrovasodilators after inhibition of vascular nitric oxide synthesis in vivo. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2166–2170. doi: 10.1073/pnas.88.6.2166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ontkean M., Gay R., Greenberg B. Diminished endothelium-derived relaxing factor activity in an experimental model of chronic heart failure. Circ Res. 1991 Oct;69(4):1088–1096. doi: 10.1161/01.res.69.4.1088. [DOI] [PubMed] [Google Scholar]
  26. Otsuka Y., DiPiero A., Hirt E., Brennaman B., Lockette W. Vascular relaxation and cGMP in hypertension. Am J Physiol. 1988 Jan;254(1 Pt 2):H163–H169. doi: 10.1152/ajpheart.1988.254.1.H163. [DOI] [PubMed] [Google Scholar]
  27. Pham-Huu-Trung M. T., Corvol P. A direct determination of plasma aldosterone. Steroids. 1974 Nov;24(5):587–508. doi: 10.1016/0039-128x(74)90013-0. [DOI] [PubMed] [Google Scholar]
  28. Roy L. F., Ogilvie R. I., Larochelle P., Hamet P., Leenen F. H. Cardiac and vascular effects of atrial natriuretic factor and sodium nitroprusside in healthy men. Circulation. 1989 Feb;79(2):383–392. doi: 10.1161/01.cir.79.2.383. [DOI] [PubMed] [Google Scholar]
  29. Schini V., Schoeffter P., Miller R. C. Effect of endothelium on basal and on stimulated accumulation and efflux of cyclic GMP in rat isolated aorta. Br J Pharmacol. 1989 Jul;97(3):853–865. doi: 10.1111/j.1476-5381.1989.tb12025.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  31. Verbeuren T. J., Jordaens F. H., Zonnekeyn L. L., Van Hove C. E., Coene M. C., Herman A. G. Effect of hypercholesterolemia on vascular reactivity in the rabbit. I. Endothelium-dependent and endothelium-independent contractions and relaxations in isolated arteries of control and hypercholesterolemic rabbits. Circ Res. 1986 Apr;58(4):552–564. doi: 10.1161/01.res.58.4.552. [DOI] [PubMed] [Google Scholar]
  32. Waldman S. A., Rapoport R. M., Murad F. Atrial natriuretic factor selectively activates particulate guanylate cyclase and elevates cyclic GMP in rat tissues. J Biol Chem. 1984 Dec 10;259(23):14332–14334. [PubMed] [Google Scholar]
  33. Winquist R. J., Bunting P. B., Baskin E. P., Wallace A. A. Decreased endothelium-dependent relaxation in New Zealand genetic hypertensive rats. J Hypertens. 1984 Oct;2(5):541–545. doi: 10.1097/00004872-198410000-00015. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES