Abstract
Lipoprotein lipase (LPL), the rate limiting enzyme for hydrolysis of lipoprotein triglyceride, also mediates nonenzymatic interactions between lipoproteins and heparan sulfate proteoglycans. To determine whether cell surface LPL increases LDL binding to cells, bovine milk LPL was added to upregulated and nonupregulated human fibroblasts along with media containing LDL. LDL binding to cells was increased 2-10-fold, in a dose-dependent manner, by the addition of 0.5-10 micrograms/ml of LPL. The amount of LDL bound to the cells in the presence of LPL far exceeded the capacity for LDL binding via the LDL receptor. Treatment of fibroblasts with heparinase and heparitinase resulted in a 64% decrease in LPL-mediated LDL binding. Compared to studies performed without LPL, more LDL was internalized and degraded in the presence of LPL, but the time course was slower than that of classical lipoprotein receptor mediated pathways. In LDL receptor negative fibroblasts, LPL increased surface bound LDL > 140-fold, intracellular LDL > 40-fold, and LDL degradation > 6-fold. These effects were almost completely inhibited by heparin and anti-LPL monoclonal antibody. LPL also increased the binding and uptake by fibroblasts of apolipoprotein-free triglyceride emulsions; binding was increased > 8-fold and cellular uptake was increased > 40-fold with LPL. LPL increased LDL binding to THP-1 monocytes, and increased LDL uptake (4.5-fold) and LDL degradation (2.5-fold) by THP-1 macrophages. In the absence of added LPL, heparin and anti-LPL monoclonal antibodies decreased LDL degradation by > 40%, and triglyceride emulsion uptake by > 50%, suggesting that endogenously produced LPL mediated lipid particle uptake and degradation. We conclude that LPL increases lipid and lipoprotein uptake by cells via a pathway not involving the LDL receptor. This pathway may be important for lipid accumulation in LPL synthesizing cells.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Auwerx J. H., Deeb S., Brunzell J. D., Peng R., Chait A. Transcriptional activation of the lipoprotein lipase and apolipoprotein E genes accompanies differentiation in some human macrophage-like cell lines. Biochemistry. 1988 Apr 19;27(8):2651–2655. doi: 10.1021/bi00408a003. [DOI] [PubMed] [Google Scholar]
- Auwerx J. H., Deeb S., Brunzell J. D., Wolfbauer G., Chait A. Lipoprotein lipase gene expression in THP-1 cells. Biochemistry. 1989 May 30;28(11):4563–4567. doi: 10.1021/bi00437a009. [DOI] [PubMed] [Google Scholar]
- Aviram M., Bierman E. L., Chait A. Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase induces enhanced uptake and cholesterol accumulation in cells. J Biol Chem. 1988 Oct 25;263(30):15416–15422. [PubMed] [Google Scholar]
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- Beisiegel U., Weber W., Bengtsson-Olivecrona G. Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8342–8346. doi: 10.1073/pnas.88.19.8342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
- Bosner M. S., Gulick T., Riley D. J., Spilburg C. A., Lange L. G., 3rd Receptor-like function of heparin in the binding and uptake of neutral lipids. Proc Natl Acad Sci U S A. 1988 Oct;85(20):7438–7442. doi: 10.1073/pnas.85.20.7438. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chait A., Iverius P. H., Brunzell J. D. Lipoprotein lipase secretion by human monocyte-derived macrophages. J Clin Invest. 1982 Feb;69(2):490–493. doi: 10.1172/JCI110473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheng C. F., Oosta G. M., Bensadoun A., Rosenberg R. D. Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem. 1981 Dec 25;256(24):12893–12898. [PubMed] [Google Scholar]
- Cupp M., Bensadoun A., Melford K. Heparin decreases the degradation rate of lipoprotein lipase in adipocytes. J Biol Chem. 1987 May 5;262(13):6383–6388. [PubMed] [Google Scholar]
- Domin W. S., Chait A., Deeb S. S. Transcriptional activation of the lipoprotein lipase gene in macrophages by dexamethasone. Biochemistry. 1991 Mar 12;30(10):2570–2574. doi: 10.1021/bi00224a002. [DOI] [PubMed] [Google Scholar]
- Eckel R. H. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989 Apr 20;320(16):1060–1068. doi: 10.1056/NEJM198904203201607. [DOI] [PubMed] [Google Scholar]
- Goldberg I. J., Handley D. A., Vanni T., Paterniti J. R., Jr, Cornicelli J. A. Membrane-bound lipoprotein lipase on human monocyte-derived macrophages: localization by immunocolloidal gold technique. Biochim Biophys Acta. 1988 Apr 15;959(3):220–228. doi: 10.1016/0005-2760(88)90194-4. [DOI] [PubMed] [Google Scholar]
- Goldberg I. J., Kandel J. J., Blum C. B., Ginsberg H. N. Association of plasma lipoproteins with postheparin lipase activities. J Clin Invest. 1986 Dec;78(6):1523–1528. doi: 10.1172/JCI112744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg I. J., Soprano D. R., Wyatt M. L., Vanni T. M., Kirchgessner T. G., Schotz M. C. Localization of lipoprotein lipase mRNA in selected rat tissues. J Lipid Res. 1989 Oct;30(10):1569–1577. [PubMed] [Google Scholar]
- Goldstein J. L., Basu S. K., Brown M. S. Receptor-mediated endocytosis of low-density lipoprotein in cultured cells. Methods Enzymol. 1983;98:241–260. doi: 10.1016/0076-6879(83)98152-1. [DOI] [PubMed] [Google Scholar]
- Goldstein J. L., Basu S. K., Brunschede G. Y., Brown M. S. Release of low density lipoprotein from its cell surface receptor by sulfated glycosaminoglycans. Cell. 1976 Jan;7(1):85–95. doi: 10.1016/0092-8674(76)90258-0. [DOI] [PubMed] [Google Scholar]
- HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hussain M. M., Mahley R. W., Boyles J. K., Fainaru M., Brecht W. J., Lindquist P. A. Chylomicron-chylomicron remnant clearance by liver and bone marrow in rabbits. Factors that modify tissue-specific uptake. J Biol Chem. 1989 Jun 5;264(16):9571–9582. [PubMed] [Google Scholar]
- Jackson R. L., Busch S. J., Cardin A. D. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol Rev. 1991 Apr;71(2):481–539. doi: 10.1152/physrev.1991.71.2.481. [DOI] [PubMed] [Google Scholar]
- Jackson R. L., Socorro L., Fletcher G. M., Cardin A. D. Heparin binding to lipoprotein lipase and low density lipoproteins. FEBS Lett. 1985 Oct 14;190(2):297–300. doi: 10.1016/0014-5793(85)81304-1. [DOI] [PubMed] [Google Scholar]
- Khoo J. C., Mahoney E. M., Witztum J. L. Secretion of lipoprotein lipase by macrophages in culture. J Biol Chem. 1981 Jul 25;256(14):7105–7108. [PubMed] [Google Scholar]
- Khoo J. C., Miller E., McLoughlin P., Steinberg D. Enhanced macrophage uptake of low density lipoprotein after self-aggregation. Arteriosclerosis. 1988 Jul-Aug;8(4):348–358. doi: 10.1161/01.atv.8.4.348. [DOI] [PubMed] [Google Scholar]
- Kuusi T., Nikklä E. A., Virtanen I., Kinnunen P. K. Localization of the heparin-releasable lipase in situ in the rat liver. Biochem J. 1979 Jul 1;181(1):245–246. doi: 10.1042/bj1810245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lindqvist P., Ostlund-Lindqvist A. M., Witztum J. L., Steinberg D., Little J. A. The role of lipoprotein lipase in the metabolism of triglyceride-rich lipoproteins by macrophages. J Biol Chem. 1983 Aug 10;258(15):9086–9092. [PubMed] [Google Scholar]
- Nilsson-Ehle P., Schotz M. C. A stable, radioactive substrate emulsion for assay of lipoprotein lipase. J Lipid Res. 1976 Sep;17(5):536–541. [PubMed] [Google Scholar]
- O'Brien K. D., Gordon D., Deeb S., Ferguson M., Chait A. Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques. J Clin Invest. 1992 May;89(5):1544–1550. doi: 10.1172/JCI115747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens R. T., Wagner W. D. Metabolism and turnover of cell surface-associated heparan sulfate proteoglycan and chondroitin sulfate proteoglycan in normal and cholesterol-enriched macrophages. Arterioscler Thromb. 1991 Nov-Dec;11(6):1752–1758. doi: 10.1161/01.atv.11.6.1752. [DOI] [PubMed] [Google Scholar]
- Saxena U., Klein M. G., Vanni T. M., Goldberg I. J. Lipoprotein lipase increases low density lipoprotein retention by subendothelial cell matrix. J Clin Invest. 1992 Feb;89(2):373–380. doi: 10.1172/JCI115595. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saxena U., Witte L. D., Goldberg I. J. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem. 1989 Mar 15;264(8):4349–4355. [PubMed] [Google Scholar]
- Socorro L., Green C. C., Jackson R. L. Preparation of a homogeneous and stable form of bovine milk lipoprotein lipase. Prep Biochem. 1985;15(3):133–143. doi: 10.1080/10826068508062267. [DOI] [PubMed] [Google Scholar]
- Stein O., Friedman G., Chajek-Shaul T., Halperin G., Olivecrona T., Stein Y. Transfer of cholesteryl linoleyl ether from phosphatidylcholine and phosphatidylethanolamine liposomes to cultured cells catalyzed by lipoprotein lipase. Biochim Biophys Acta. 1983 Feb 7;750(2):306–316. doi: 10.1016/0005-2760(83)90033-4. [DOI] [PubMed] [Google Scholar]
- Suits A. G., Chait A., Aviram M., Heinecke J. W. Phagocytosis of aggregated lipoprotein by macrophages: low density lipoprotein receptor-dependent foam-cell formation. Proc Natl Acad Sci U S A. 1989 Apr;86(8):2713–2717. doi: 10.1073/pnas.86.8.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tabas I., Lim S., Xu X. X., Maxfield F. R. Endocytosed beta-VLDL and LDL are delivered to different intracellular vesicles in mouse peritoneal macrophages. J Cell Biol. 1990 Sep;111(3):929–940. doi: 10.1083/jcb.111.3.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Traber M. G., Olivecrona T., Kayden H. J. Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro. J Clin Invest. 1985 May;75(5):1729–1734. doi: 10.1172/JCI111883. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williams K. J., Petrie K. A., Brocia R. W., Swenson T. L. Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia. J Clin Invest. 1991 Oct;88(4):1300–1306. doi: 10.1172/JCI115434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ylä-Herttuala S., Lipton B. A., Rosenfeld M. E., Goldberg I. J., Steinberg D., Witztum J. L. Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10143–10147. doi: 10.1073/pnas.88.22.10143. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilversmit D. B. Atherogenesis: a postprandial phenomenon. Circulation. 1979 Sep;60(3):473–485. doi: 10.1161/01.cir.60.3.473. [DOI] [PubMed] [Google Scholar]