Abstract
Cupriavidus basilensis 4G11 was isolated from groundwater at the Oak Ridge Field Research Center (FRC) site. Here, we report the complete genome sequence and annotation of Cupriavidus basilensis 4G11. The genome contains 8,421,483 bp, 7,661 predicted protein-coding genes, and a total GC content of 64.4%.
GENOME ANNOUNCEMENT
Cupriavidus species (previously known as Wautersia or Ralstonia) are Gram-negative betaproteobacteria that are known for their diverse metabolic capabilities (1–6). In addition, heavy-metal resistance is a typical characteristic of Cupriavidus strains; previously sequenced Cupriavidus species such as C. metallidurans, C. eutrophus, C. pinatubonensis, C. taiwanensis, and Cupriavidus sp. strain BIS7 encode a number of putative proteins involved in heavy-metal resistance and biodegradation activities (1–3, 5, 7–14). Cupriavidus basilensis 4G11 was isolated on R2A media from a single port well (area 5, FW 507) of the FRC at Oak Ridge, TN. Cupriavidus basilensis 4G11 has a 16S rRNA gene 99.1% identical to that of Cupriavidus basilensis strain DSM 11853.
Whole-genome sequencing of Cupriavidus basilensis 4G11 was done primarily with Pacific Biosciences (PacBio) SMRT sequencing. We generated 4 SMRT cells of sequencing data with an average insert size of 8 kb. For comparison and some error correction of the final PacBio assembly, we also collected Illumina sequencing data. For Illumina sequencing, a TruSeq DNA sample prep v2 kit (Illumina, Inc., CA) was used to prepare an Illumina paired-end library from an average insert size of 800 bp. A total of 456,136 paired-end reads (2 × 300 bp) were generated on an Illumina MiSeq instrument. Illumina sequence assembly was performed using CLC Genomics Workbench (version 7.5.1). We assembled the PacBio data with SMRT Portal software (SMRTAnalysis version v2.2.0.p2) and an HGAP2 assembly algorithm to an overall coverage estimate of 150×. We identified ~10 kbp of repeated sequence at the end of each PacBio scaffold that indicated the scaffold was a circular chromosome. We mapped the Illumina data to the PacBio scaffolds and then used the Illumina consensus sequence to replace the repeated PacBio regions on each scaffold. This resulted in two closed circular chromosomes. The assembled Cupriavidus basilensis 4G11 genome is 8,421,483 bp with two chromosomes of lengths of 4,522,716 bp (main) and 3,898,767 bp (secondary), and the total GC content is 64.4%.
We used the Rapid Annotation using Subsystem Technology (RAST) server (15) for annotating the Cupriavidus basilensis 4G11 genome. The entire genome contains 7,661 predicted protein-coding genes, 69 tRNAs (56 on the main chromosome, 13 on secondary chromosomes), and 21 rRNAs (including 23S, 16S, and 5S). The genome annotation reveals a number of putative proteins responsible for heavy-metal resistance, including CzcABD (putative cobalt, zinc, and cadmium resistance), CtpF (metal cation transporter), a lead-, cadmium-, mercury-, and zinc-transporting ATPase, and a copper-translocating P-type ATPase. The presence of these putative metal resistance proteins and the broad metabolic diversity of Cupriavidus make this organism relevant for biogeochemical and bioremediation studies.
Nucleotide sequence accession numbers.
This whole-genome shotgun project has been deposited in GenBank under the accession numbers CP010536 (main chromosome) and CP010537 (secondary chromosome).
ACKNOWLEDGMENT
This material by Ecosystems and Networks Integrated with Genes and Molecular Assemblies (ENIGMA) (http://enigma.lbl.gov), a Scientific Focus Area program at Lawrence Berkeley National Laboratory, is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Biological & Environmental Research, under contract number DE-AC02-05CH11231.
Footnotes
Citation Ray J, Waters RJ, Skerker JM, Kuehl JV, Price MN, Huang J, Chakraborty R, Arkin AP, Deutschbauer A. 2015. Complete genome sequence of Cupriavidus basilensis 4G11, isolated from the Oak Ridge Field Research Center site. Genome Announc 3(3):e00322-15. doi:10.1128/genomeA.00322-15.
REFERENCES
- 1.Wischer D, Kumaresan D, Johnston A, El Khawand M, Stephenson J, Hillebrand-Voiculescu AM, Chen Y, Colin Murrell J. 2015. Bacterial metabolism of methylated amines and identification of novel methylotrophs in Movile Cave. ISME J 9:195–206. doi: 10.1038/ismej.2014.102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Li L-G, Cai L, Zhang T. 2013. Genome of Cupriavidus sp. HMR-1, a heavy metal-resistant bacterium. Genome Announc 1(1):e00202-12. doi: 10.1128/genomeA.00202-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 3.Hajdu R, Pinheiro JP, Galceran J, Slaveykova VI. 2010. Modeling of Cd uptake and efflux kinetics in metal-resistant bacterium Cupriavidus metallidurans. Environ Sci Technol 44:4597–4602. doi: 10.1021/es100687h. [DOI] [PubMed] [Google Scholar]
- 4.Nies DH. 2000. Heavy metal-resistant bacteria as extremophiles: molecular physiology and biotechnological use of Ralstonia sp. CH34. Extremophiles 4:77–82. doi: 10.1007/s007920050140. [DOI] [PubMed] [Google Scholar]
- 5.Wang W, Yang S, Hunsinger GB, Pienkos PT, Johnson DK. 2014. Connecting lignin-degradation pathway with pretreatment inhibitor sensitivity of Cupriavidus necator. Front Microbiol 5:247. doi: 10.3389/fmicb.2014.00247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Vandamme P, Coenye T. 2004. Taxonomy of the genus Cupriavidus: a tale of lost and found. Int J Syst Evol Microbiol 54:2285–2289. doi: 10.1099/ijs.0.63247-0. [DOI] [PubMed] [Google Scholar]
- 7.Ledger T, Zúñiga A, Kraiser T, Dasencich P, Donoso R, Pérez-Pantoja D, González B. 2012. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and acacia cavern by Cupriavidus pinatubonensis JMP134. Antonie Van Leeuwenhoek 101:713–723. doi: 10.1007/s10482-011-9685-8. [DOI] [PubMed] [Google Scholar]
- 8.Hong KW, Thinagaran Da, Gan HM, Yin W-F, Chan K-G. 2012. Whole-genome sequence of Cupriavidus sp. strain bis7, a heavy-metal-resistant bacterium. J Bacteriol 194:6324. doi: 10.1128/JB.01608-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Mayer J, Huhn T, Habeck M, Denger K, Hollemeyer K, Cook AM. 2010. 2,3-Dihydroxypropane-1-sulfonate degraded by Cupriavidus pinatubonensis JMP134: purification of dihydroxypropanesulfonate 3-dehydrogenase. Microbiology 156:1556–1564. doi: 10.1099/mic.0.037580-0. [DOI] [PubMed] [Google Scholar]
- 10.Ramirez M, Obrzydowski J, Ayers M, Virparia S, Wang M, Stefan K, Linchangco R, Castignetti D. 2014. Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier. ScientificWorldJournal 2014:901702. doi: 10.1155/2014/901702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Slaveykova VI, Pinheiro JP, Floriani M, Garcia M. 2013. Interactions of core-shell quantum dots with metal resistant bacterium Cupriavidus metallidurans: consequences for Cu and Pb removal. J Hazard Mater 261:123–129. doi: 10.1016/j.jhazmat.2013.07.013. [DOI] [PubMed] [Google Scholar]
- 12.Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y. 2013. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. Biotechnol Biofuels 6:1. doi: 10.1186/1754-6834-6-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Monsieurs P, Moors H, Van Houdt R, Janssen PJ, Janssen A, Coninx I, Mergeay M, Leys N. 2011. Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. Biometals 24:1133–1151. doi: 10.1007/s10534-011-9473-y. [DOI] [PubMed] [Google Scholar]
- 14.Koopman F, Wierckx N, de Winde JH, Ruijssenaars HJ. 2010. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci USA 107:4919–4924. doi: 10.1073/pnas.0913039107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]