Abstract
Coronary artery stenosis or occlusion results in reduced coronary flow and myocardial contractile depression. At severe flow reductions, increased inorganic phosphate (Pi) and intracellular acidosis clearly play a role in contractile depression. However, during milder flow reductions the mechanism(s) underlying contractile depression are less clear. Previous perfused heart studies demonstrated no change of Pi or pH during mild flow reductions, suggesting that changes of intravascular pressure (garden hose effect) may be the mediator of this contractile depression. Others have reported conflicting results regarding another possible mediator of contractility, the cytosolic free calcium (Cai). To examine the respective roles of Cai, Pi, pH, and vascular pressure in regulating contractility during mild flow reductions, Indo-1 calcium fluorescence and 31P magnetic resonance spectroscopy measurements were performed on Langendorff-perfused rat hearts. Cai and diastolic calcium levels did not change during flow reductions to 50% of control. Pi demonstrated a close relationship with developed pressure and significantly increased from 2.5 +/- 0.3 to 4.2 +/- 0.4 mumol/g dry weight during a 25% flow reduction. pH was unchanged until a 50% flow reduction. Increasing vascular pressure to superphysiological levels resulted in further increases of developed pressure, with no change in Cai. These findings are consistent with the hypothesis that during mild coronary flow reductions, contractile depression is mediated by an altered relationship between Cai and pressure, rather than by decreased Cai. Furthermore, increased Pi and decreased intravascular pressure may be responsible for this altered calcium-pressure relationship during mild coronary flow reductions.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold G., Kosche F., Miessner E., Neitzert A., Lochner W. The importance of the perfusion pressure in the coronary arteries for the contractility and the oxygen consumption of the heart. Pflugers Arch Gesamte Physiol Menschen Tiere. 1968;299(4):339–356. doi: 10.1007/BF00602910. [DOI] [PubMed] [Google Scholar]
- Bittl J. A., Balschi J. A., Ingwall J. S. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Circ Res. 1987 Jun;60(6):871–878. doi: 10.1161/01.res.60.6.871. [DOI] [PubMed] [Google Scholar]
- Brooks W. M., Haseler L. J., Clarke K., Willis R. J. Relation between the phosphocreatine to ATP ratio determined by 31P nuclear magnetic resonance spectroscopy and left ventricular function in underperfused guinea-pig heart. J Mol Cell Cardiol. 1986 Feb;18(2):149–155. doi: 10.1016/s0022-2828(86)80467-9. [DOI] [PubMed] [Google Scholar]
- Chilian W. M. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res. 1991 Sep;69(3):561–570. doi: 10.1161/01.res.69.3.561. [DOI] [PubMed] [Google Scholar]
- Clarke K., O'Connor A. J., Willis R. J. Temporal relation between energy metabolism and myocardial function during ischemia and reperfusion. Am J Physiol. 1987 Aug;253(2 Pt 2):H412–H421. doi: 10.1152/ajpheart.1987.253.2.H412. [DOI] [PubMed] [Google Scholar]
- Clarke K., Willis R. J. Energy metabolism and contractile function in rat heart during graded, isovolumic perfusion using 31P nuclear magnetic resonance spectroscopy. J Mol Cell Cardiol. 1987 Dec;19(12):1153–1160. doi: 10.1016/s0022-2828(87)80525-4. [DOI] [PubMed] [Google Scholar]
- Feigl E. O. Coronary physiology. Physiol Rev. 1983 Jan;63(1):1–205. doi: 10.1152/physrev.1983.63.1.1. [DOI] [PubMed] [Google Scholar]
- Fralix T. A., Heineman F. W., Balaban R. S. Effects of tissue absorbance on NAD(P)H and Indo-1 fluorescence from perfused rabbit hearts. FEBS Lett. 1990 Mar 26;262(2):287–292. doi: 10.1016/0014-5793(90)80212-2. [DOI] [PubMed] [Google Scholar]
- Godt R. E., Nosek T. M. Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J Physiol. 1989 May;412:155–180. doi: 10.1113/jphysiol.1989.sp017609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Griggs D. M., Jr, Nakamura Y. Effect of coronary constriction on myocardial distribution of iodoantipyrine-131-I. Am J Physiol. 1968 Nov;215(5):1082–1086. doi: 10.1152/ajplegacy.1968.215.5.1082. [DOI] [PubMed] [Google Scholar]
- Humphrey S. M., Garlick P. B. NMR-visible ATP and Pi in normoxic and reperfused rat hearts: a quantitative study. Am J Physiol. 1991 Jan;260(1 Pt 2):H6–12. doi: 10.1152/ajpheart.1991.260.1.H6. [DOI] [PubMed] [Google Scholar]
- Jacobus W. E., Pores I. H., Lucas S. K., Weisfeldt M. L., Flaherty J. T. Intracellular acidosis and contractility in the normal and ischemic heart as examined by 31P NMR. J Mol Cell Cardiol. 1982 Sep;14 (Suppl 3):13–20. doi: 10.1016/0022-2828(82)90124-9. [DOI] [PubMed] [Google Scholar]
- Jeffrey F. M., Storey C. J., Nunnally R. L., Malloy C. R. Effect of ischemia on NMR detection of phosphorylated metabolites in the intact rat heart. Biochemistry. 1989 Jun 27;28(13):5323–5326. doi: 10.1021/bi00439a003. [DOI] [PubMed] [Google Scholar]
- Kammermeier H., Schmidt P., Jüngling E. Free energy change of ATP-hydrolysis: a causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol. 1982 May;14(5):267–277. doi: 10.1016/0022-2828(82)90205-x. [DOI] [PubMed] [Google Scholar]
- Keller A. M., Cannon P. J. Effect of graded reductions of coronary pressure and flow on myocardial metabolism and performance: a model of "hibernating" myocardium. J Am Coll Cardiol. 1991 Jun;17(7):1661–1670. doi: 10.1016/0735-1097(91)90662-s. [DOI] [PubMed] [Google Scholar]
- Kentish J. C. The effects of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J Physiol. 1986 Jan;370:585–604. doi: 10.1113/jphysiol.1986.sp015952. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kihara Y., Grossman W., Morgan J. P. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res. 1989 Oct;65(4):1029–1044. doi: 10.1161/01.res.65.4.1029. [DOI] [PubMed] [Google Scholar]
- Kitakaze M., Marban E. Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol. 1989 Jul;414:455–472. doi: 10.1113/jphysiol.1989.sp017698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koretsune Y., Corretti M. C., Kusuoka H., Marban E. Mechanism of early ischemic contractile failure. Inexcitability, metabolite accumulation, or vascular collapse? Circ Res. 1991 Jan;68(1):255–262. doi: 10.1161/01.res.68.1.255. [DOI] [PubMed] [Google Scholar]
- Lavanchy N., Martin J., Rossi A. Graded global ischaemia and reperfusion of the isolated perfused rat heart: characterisation by 31P NMR spectroscopy of the extent of energy metabolism damage. Cardiovasc Res. 1984 Sep;18(9):573–582. doi: 10.1093/cvr/18.9.573. [DOI] [PubMed] [Google Scholar]
- Lorell B. H., Apstein C. S., Cunningham M. J., Schoen F. J., Weinberg E. O., Peeters G. A., Barry W. H. Contribution of endothelial cells to calcium-dependent fluorescence transients in rabbit hearts loaded with indo 1. Circ Res. 1990 Aug;67(2):415–425. doi: 10.1161/01.res.67.2.415. [DOI] [PubMed] [Google Scholar]
- Marshall R. C. Correlation of contractile dysfunction with oxidative energy production and tissue high energy phosphate stores during partial coronary flow disruption in rabbit heart. J Clin Invest. 1988 Jul;82(1):86–95. doi: 10.1172/JCI113606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matthews P. M., Taylor D. J., Radda G. K. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart. Cardiovasc Res. 1986 Jan;20(1):13–19. doi: 10.1093/cvr/20.1.13. [DOI] [PubMed] [Google Scholar]
- Path G., Robitaille P. M., Merkle H., Tristani M., Zhang J., Garwood M., From A. H., Bache R. J., Uğurbil K. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res. 1990 Sep;67(3):660–673. doi: 10.1161/01.res.67.3.660. [DOI] [PubMed] [Google Scholar]
- Schaefer S., Schwartz G. G., Gober J. R., Wong A. K., Camacho S. A., Massie B., Weiner M. W. Relationship between myocardial metabolites and contractile abnormalities during graded regional ischemia. Phosphorus-31 nuclear magnetic resonance studies of porcine myocardium in vivo. J Clin Invest. 1990 Mar;85(3):706–713. doi: 10.1172/JCI114495. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwartz G. G., Schaefer S., Meyerhoff D. J., Gober J., Fochler P., Massie B., Weiner M. W. Dynamic relation between myocardial contractility and energy metabolism during and following brief coronary occlusion in the pig. Circ Res. 1990 Aug;67(2):490–500. doi: 10.1161/01.res.67.2.490. [DOI] [PubMed] [Google Scholar]
- Weintraub W. S., Hattori S., Agarwal J. B., Bodenheimer M. M., Banka V. S., Helfant R. H. The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischemia. Circ Res. 1981 Mar;48(3):430–438. doi: 10.1161/01.res.48.3.430. [DOI] [PubMed] [Google Scholar]
- Weiss R. G., Chacko V. P., Glickson J. D., Gerstenblith G. Comparative 13C and 31P NMR assessment of altered metabolism during graded reductions in coronary flow in intact rat hearts. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6426–6430. doi: 10.1073/pnas.86.16.6426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wikman-Coffelt J., Wu S. T., Parmley W. W. Intracellular endocardial calcium and myocardial function in rat hearts. Cell Calcium. 1991 Jan;12(1):39–50. doi: 10.1016/0143-4160(91)90083-q. [DOI] [PubMed] [Google Scholar]
- van der Veen J. W., de Beer R., Luyten P. R., van Ormondt D. Accurate quantification of in vivo 31P NMR signals using the variable projection method and prior knowledge. Magn Reson Med. 1988 Jan;6(1):92–98. doi: 10.1002/mrm.1910060111. [DOI] [PubMed] [Google Scholar]
