Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Nov;90(5):1850–1856. doi: 10.1172/JCI116061

Ion channels in human erythroblasts. Modulation by erythropoietin.

J Y Cheung 1, M B Elensky 1, U Brauneis 1, R C Scaduto Jr 1, L L Bell 1, D L Tillotson 1, B A Miller 1
PMCID: PMC443245  PMID: 1385476

Abstract

To investigate the mechanism of intracellular Ca2+ ([Cai]) increase in human burst-forming unit-erythroid-derived erythroblasts by erythropoietin, we measured [Cai] with digital video imaging, cellular phosphoinositides with high performance liquid chromatography, and plasma membrane potential and currents with whole cell patch clamp. Chelation of extracellular free Ca2+ abolished [Cai] increase induced by erythropoietin. In addition, the levels of inositol-1,4,5-trisphosphate did not increase in erythropoietin-treated erythroblasts. These results indicate that in erythropoietin-stimulated cells, Ca2+ influx rather than intracellular Ca2+ mobilization was responsible for [Cai] rise. Both Ni2+ and moderately high doses of nifedipine blocked [Cai] increase, suggesting involvement of ion channels. Resting membrane potential in human erythroblasts was -10.9 +/- 1.0 mV and was not affected by erythropoietin, suggesting erythropoietin modulated a voltage-independent ion channel permeable to Ca2+. No voltage-dependent ion channel but a Ca(2+)-activated K+ channel was detected in human erythroblasts. The magnitude of erythropoietin-induced [Cai] increase, however, was insufficient to open Ca(2+)-activated K+ channels. Our data suggest erythropoietin modulated a voltage-independent ion channel permeable to Ca2+, resulting in sustained increases in [Cai].

Full text

PDF
1850

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berridge M. J. The Croonian lecture, 1988. Inositol lipids and calcium signalling. Proc R Soc Lond B Biol Sci. 1988 Sep 22;234(1277):359–378. doi: 10.1098/rspb.1988.0054. [DOI] [PubMed] [Google Scholar]
  2. Bird G. S., Rossier M. F., Hughes A. R., Shears S. B., Armstrong D. L., Putney J. W., Jr Activation of Ca2+ entry into acinar cells by a non-phosphorylatable inositol trisphosphate. Nature. 1991 Jul 11;352(6331):162–165. doi: 10.1038/352162a0. [DOI] [PubMed] [Google Scholar]
  3. Bonanou-Tzedaki S. A., Setchenska M. S., Arnstein H. R. Stimulation of the adenylate cyclase activity of rabbit bone marrow immature erythroblasts by erythropoietin and haemin. Eur J Biochem. 1986 Mar 3;155(2):363–370. doi: 10.1111/j.1432-1033.1986.tb09499.x. [DOI] [PubMed] [Google Scholar]
  4. Brown A. M., Birnbaumer L. Direct G protein gating of ion channels. Am J Physiol. 1988 Mar;254(3 Pt 2):H401–H410. doi: 10.1152/ajpheart.1988.254.3.H401. [DOI] [PubMed] [Google Scholar]
  5. Caubet J. F., Mitjavila M. T., Dubart A., Roten D., Weil S. C., Vainchenker W. Expression of the c-fos protooncogene by human and murine erythroblasts. Blood. 1989 Aug 15;74(3):947–951. [PubMed] [Google Scholar]
  6. Choi H. S., Wojchowski D. M., Sytkowski A. J. Erythropoietin rapidly alters phosphorylation of pp43, an erythroid membrane protein. J Biol Chem. 1987 Mar 5;262(7):2933–2936. [PubMed] [Google Scholar]
  7. Dean N. M., Moyer J. D. Separation of multiple isomers of inositol phosphates formed in GH3 cells. Biochem J. 1987 Mar 1;242(2):361–366. doi: 10.1042/bj2420361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta. 1958 Dec;30(3):653–654. doi: 10.1016/0006-3002(58)90124-0. [DOI] [PubMed] [Google Scholar]
  9. Grygorczyk R., Schwarz W., Passow H. Ca2+-activated K+ channels in human red cells. Comparison of single-channel currents with ion fluxes. Biophys J. 1984 Apr;45(4):693–698. doi: 10.1016/S0006-3495(84)84211-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Hagiwara S., Ohmori H. Studies of calcium channels in rat clonal pituitary cells with patch electrode voltage clamp. J Physiol. 1982 Oct;331:231–252. doi: 10.1113/jphysiol.1982.sp014371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  13. Hansen C. A., Mah S., Williamson J. R. Formation and metabolism of inositol 1,3,4,5-tetrakisphosphate in liver. J Biol Chem. 1986 Jun 25;261(18):8100–8103. [PubMed] [Google Scholar]
  14. Krause K. H., Welsh M. J. Voltage-dependent and Ca2(+)-activated ion channels in human neutrophils. J Clin Invest. 1990 Feb;85(2):491–498. doi: 10.1172/JCI114464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Latorre R., Oberhauser A., Labarca P., Alvarez O. Varieties of calcium-activated potassium channels. Annu Rev Physiol. 1989;51:385–399. doi: 10.1146/annurev.ph.51.030189.002125. [DOI] [PubMed] [Google Scholar]
  16. Leibowitz M. D., Dionne V. E. A polisher for patch pipets. Pflugers Arch. 1987 Oct;410(3):338–339. doi: 10.1007/BF00580286. [DOI] [PubMed] [Google Scholar]
  17. Lew V. L., Muallem S., Seymour C. A. Properties of the Ca2+-activated K+ channel in one-step inside-out vesicles from human red cell membranes. Nature. 1982 Apr 22;296(5859):742–744. doi: 10.1038/296742a0. [DOI] [PubMed] [Google Scholar]
  18. Lewis R. S., Cahalan M. D. Ion channels and signal transduction in lymphocytes. Annu Rev Physiol. 1990;52:415–430. doi: 10.1146/annurev.ph.52.030190.002215. [DOI] [PubMed] [Google Scholar]
  19. Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
  20. Mason-Garcia M., Weill C. L., Beckman B. S. Rapid activation by erythropoietin of protein kinase C in nuclei of erythroid progenitor cells. Biochem Biophys Res Commun. 1990 Apr 30;168(2):490–497. doi: 10.1016/0006-291x(90)92348-4. [DOI] [PubMed] [Google Scholar]
  21. Miller B. A., Cheung J. Y., Tillotson D. L., Hope S. M., Scaduto R. C., Jr Erythropoietin stimulates a rise in intracellular-free calcium concentration in single BFU-E derived erythroblasts at specific stages of differentiation. Blood. 1989 Apr;73(5):1188–1194. [PubMed] [Google Scholar]
  22. Miller B. A., Foster K., Robishaw J. D., Whitfield C. F., Bell L., Cheung J. Y. Role of pertussis toxin-sensitive guanosine triphosphate-binding proteins in the response of erythroblasts to erythropoietin. Blood. 1991 Feb 1;77(3):486–492. [PubMed] [Google Scholar]
  23. Miller B. A., Scaduto R. C., Jr, Tillotson D. L., Botti J. J., Cheung J. Y. Erythropoietin stimulates a rise in intracellular free calcium concentration in single early human erythroid precursors. J Clin Invest. 1988 Jul;82(1):309–315. doi: 10.1172/JCI113588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Mladenovic J., Kay N. E. Erythropoietin induces rapid increases in intracellular free calcium in human bone marrow cells. J Lab Clin Med. 1988 Jul;112(1):23–27. [PubMed] [Google Scholar]
  25. Prochownik E. V., Smith M. J., Snyder K., Emeagwali D. Amplified expression of three jun family members inhibits erythroleukemia differentiation. Blood. 1990 Nov 1;76(9):1830–1837. [PubMed] [Google Scholar]
  26. Sawanobori T., Takanashi H., Hiraoka M., Iida Y., Kamisaka K., Maezawa H. Electrophysiological properties of isolated rat liver cells. J Cell Physiol. 1989 Jun;139(3):580–585. doi: 10.1002/jcp.1041390318. [DOI] [PubMed] [Google Scholar]
  27. Sheng M., Thompson M. A., Greenberg M. E. CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science. 1991 Jun 7;252(5011):1427–1430. doi: 10.1126/science.1646483. [DOI] [PubMed] [Google Scholar]
  28. Todokoro K., Watson R. J., Higo H., Amanuma H., Kuramochi S., Yanagisawa H., Ikawa Y. Down-regulation of c-myb gene expression is a prerequisite for erythropoietin-induced erythroid differentiation. Proc Natl Acad Sci U S A. 1988 Dec;85(23):8900–8904. doi: 10.1073/pnas.85.23.8900. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tse A., Hille B. GnRH-induced Ca2+ oscillations and rhythmic hyperpolarizations of pituitary gonadotropes. Science. 1992 Jan 24;255(5043):462–464. doi: 10.1126/science.1734523. [DOI] [PubMed] [Google Scholar]
  30. Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
  31. Wolff D., Cecchi X., Spalvins A., Canessa M. Charybdotoxin blocks with high affinity the Ca-activated K+ channel of Hb A and Hb S red cells: individual differences in the number of channels. J Membr Biol. 1988 Dec;106(3):243–252. doi: 10.1007/BF01872162. [DOI] [PubMed] [Google Scholar]
  32. Yelamarty R. V., Miller B. A., Scaduto R. C., Jr, Yu F. T., Tillotson D. L., Cheung J. Y. Three-dimensional intracellular calcium gradients in single human burst-forming units-erythroid-derived erythroblasts induced by erythropoietin. J Clin Invest. 1990 Jun;85(6):1799–1809. doi: 10.1172/JCI114638. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES