Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Nov;90(5):2110–2116. doi: 10.1172/JCI116095

Hepatic uptake of a modified low molecular weight heparin in rats.

G Stehle 1, E A Friedrich 1, H Sinn 1, A Wunder 1, J Harenberg 1, C E Dempfle 1, W Maier-Borst 1, D L Heene 1
PMCID: PMC443279  PMID: 1331180

Abstract

Fractionated and unfractionated heparins are widely used as antithrombotic agents. Because of their heterogeneous composition, it is difficult to study the pharmacokinetics of these drugs. We now report on a new method for labeling low molecular weight heparins with 131I by binding tyramine to the anhydromannose end of the molecules. We examined the pharmacokinetics of the compound by intravenous injection of 131I-tyramine-heparin into Wistar rats. About 18% of the activity was found in the liver, whereas 33% was detected in urine. Biological activity in terms of Factor Xa inhibition was measurable. Since evidence from cell culture experiments implies that reticuloendothelial cell system receptors might be involved in heparin metabolism, maleylated BSA, a substance known to block scavenger receptors, was injected before the radiolabeled heparin compound. The liver uptake was reduced from 17.4 to 4.8%. Injection of unfractionated heparin before tracer application caused a considerable increase in urine excretion of the tracer substance. To our knowledge, this is the first report that liver uptake of heparins is linked to scavenger receptor mediated mechanisms in vivo. This interaction of heparins with scavenger receptors might play an important role in the biology of the vessel wall.

Full text

PDF
2110

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacher P., Welzel D., Iqbal O., Hoppensteadt D., Callas D., Walenga J. M., Fareed J. The thrombolytic potency of LMW-heparin compared to urokinase in a rabbit jugular vein clot lysis model. Thromb Res. 1992 May 1;66(2-3):151–158. doi: 10.1016/0049-3848(92)90185-d. [DOI] [PubMed] [Google Scholar]
  2. Barzu T., van Rijn J. L., Petitou M., Tobelem G., Caen J. P. Heparin degradation in the endothelial cells. Thromb Res. 1987 Sep 1;47(5):601–609. doi: 10.1016/0049-3848(87)90365-3. [DOI] [PubMed] [Google Scholar]
  3. Bleiberg I., MacGregor I., Aronson M. Heparin receptors on mouse macrophages. Thromb Res. 1983 Jan 1;29(1):53–61. doi: 10.1016/0049-3848(83)90125-1. [DOI] [PubMed] [Google Scholar]
  4. Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boneu B., Buchanan M. R., Caranobe C., Gabaig A. M., Dupouy D., Sie P., Hirsh J. The disappearance of a low molecular weight heparin fraction (CY 216) differs from standard heparin in rabbits. Thromb Res. 1987 Jun 15;46(6):845–853. doi: 10.1016/0049-3848(87)90076-4. [DOI] [PubMed] [Google Scholar]
  6. Boneu B., Caranobe C., Gabaig A. M., Dupouy D., Sie P., Buchanan M. R., Hirsh J. Evidence for a saturable mechanism of disappearance of standard heparin in rabbits. Thromb Res. 1987 Jun 15;46(6):835–844. doi: 10.1016/0049-3848(87)90075-2. [DOI] [PubMed] [Google Scholar]
  7. Dawes J., Papper D. S. Catabolism of low-dose heparin in man. Thromb Res. 1979;14(6):845–860. doi: 10.1016/0049-3848(79)90004-5. [DOI] [PubMed] [Google Scholar]
  8. Dresel H. A., Friedrich E., Via D. P., Schettler G., Sinn H. Characterization of binding sites for acetylated low density lipoprotein in the rat liver in vivo and in vitro. EMBO J. 1985 May;4(5):1157–1162. doi: 10.1002/j.1460-2075.1985.tb03754.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dresel H. A., Friedrich E., Via D. P., Sinn H., Ziegler R., Schettler G. Binding of acetylated low density lipoprotein and maleylated bovine serum albumin to the rat liver: one or two receptors? EMBO J. 1987 Feb;6(2):319–326. doi: 10.1002/j.1460-2075.1987.tb04757.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. EIBER H. B., DANISHEFSKY I. Clearance of injected heparin from the blood. Nature. 1957 Dec 14;180(4598):1359–1360. doi: 10.1038/1801359a0. [DOI] [PubMed] [Google Scholar]
  11. Falcone D. J. Heparin stimulation of plasminogen activator secretion by macrophage-like cell line RAW264.7: role of the scavenger receptor. J Cell Physiol. 1989 Aug;140(2):219–226. doi: 10.1002/jcp.1041400205. [DOI] [PubMed] [Google Scholar]
  12. Friedrich E., Dresel H. A., Sinn H., Schettler G. Visualization of the hepatic low-density lipoprotein receptor in rats by sequential scintiscans. FEBS Lett. 1985 May 6;184(1):134–138. doi: 10.1016/0014-5793(85)80669-4. [DOI] [PubMed] [Google Scholar]
  13. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goldstein J. L., Ho Y. K., Basu S. K., Brown M. S. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci U S A. 1979 Jan;76(1):333–337. doi: 10.1073/pnas.76.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Harenberg J., Giese C., Dempfle C. E., Stehle G., Heene D. L. Monitoring of heparin and low molecular weight heparin with capillary and venous whole blood. Thromb Haemost. 1988 Dec 22;60(3):377–381. [PubMed] [Google Scholar]
  16. Harenberg J., Huck K., Bratsch H., Stehle G., Dempfle C. E., Mall K., Blauth M., Usadel K. H., Heene D. L. Therapeutic application of subcutaneous low-molecular-weight heparin in acute venous thrombosis. Haemostasis. 1990;20 (Suppl 1):205–219. doi: 10.1159/000216179. [DOI] [PubMed] [Google Scholar]
  17. Harenberg J., Stehle G., Augustin J., Zimmermann R. Comparative human pharmacology of low molecular weight heparins. Semin Thromb Hemost. 1989 Oct;15(4):414–423. doi: 10.1055/s-2007-1002741. [DOI] [PubMed] [Google Scholar]
  18. Hiebert L. The uptake of heparin by liver sinusoidal cells in normal and atherosclerotic rabbits. 1981 Feb 15-Mar 1Thromb Res. 21(4-5):383–390. doi: 10.1016/0049-3848(81)90139-0. [DOI] [PubMed] [Google Scholar]
  19. Kodama T., Freeman M., Rohrer L., Zabrecky J., Matsudaira P., Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature. 1990 Feb 8;343(6258):531–535. doi: 10.1038/343531a0. [DOI] [PubMed] [Google Scholar]
  20. Lee H. B., Blaufox M. D. Blood volume in the rat. J Nucl Med. 1985 Jan;26(1):72–76. [PubMed] [Google Scholar]
  21. Lindstedt K. A., Kokkonen J. O., Kovanen P. T. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res. 1992 Jan;33(1):65–75. [PubMed] [Google Scholar]
  22. Markwardt F., Klöcking H. P. Heparin-induced release of plasminogen activator. Haemostasis. 1977;6(6):370–374. doi: 10.1159/000214203. [DOI] [PubMed] [Google Scholar]
  23. Murata Y., Behr S. R., Kraemer F. B. Regulation of macrophage lipoprotein lipase secretion by the scavenger receptor. Biochim Biophys Acta. 1988 Oct 28;972(1):17–24. doi: 10.1016/0167-4889(88)90097-3. [DOI] [PubMed] [Google Scholar]
  24. Ottnad E., Via D. P., Frübis J., Sinn H., Friedrich E., Ziegler R., Dresel H. A. Differentiation of binding sites on reconstituted hepatic scavenger receptors using oxidized low-density lipoprotein. Biochem J. 1992 Feb 1;281(Pt 3):745–751. doi: 10.1042/bj2810745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ottnad E., Via D. P., Sinn H., Friedrich E., Ziegler R., Dresel H. A. Binding characteristics of reduced hepatic receptors for acetylated low-density lipoprotein and maleylated bovine serum albumin. Biochem J. 1990 Feb 1;265(3):689–698. doi: 10.1042/bj2650689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rohrer L., Freeman M., Kodama T., Penman M., Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature. 1990 Feb 8;343(6258):570–572. doi: 10.1038/343570a0. [DOI] [PubMed] [Google Scholar]
  27. Sinn H. J., Schrenk H. H., Friedrich E. A., Via D. P., Dresel H. A. Radioiodination of proteins and lipoproteins using N-bromosuccinimide as oxidizing agent. Anal Biochem. 1988 Apr;170(1):186–192. doi: 10.1016/0003-2697(88)90107-8. [DOI] [PubMed] [Google Scholar]
  28. Srinivasan S. R., Vijayagopal P., Eberle K., Radhakrishnamurthy B., Berenson G. S. Interaction of a high-affinity heparin subfraction with low-density lipoprotein stimulates cholesteryl ester accumulation in mouse macrophages. Biochim Biophys Acta. 1991 Jan 28;1081(2):188–196. doi: 10.1016/0005-2760(91)90025-d. [DOI] [PubMed] [Google Scholar]
  29. Vinazzer H., Stemberger A., Haas S., Blümel G. Influence of heparin; of different heparin fractions and of a low molecular weight heparin-like substance on the mechanism of fibrinolysis. Thromb Res. 1982 Aug 1;27(3):341–352. doi: 10.1016/0049-3848(82)90081-0. [DOI] [PubMed] [Google Scholar]
  30. Witztum J. L., Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991 Dec;88(6):1785–1792. doi: 10.1172/JCI115499. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES