Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jun;91(6):2423–2428. doi: 10.1172/JCI116476

Guanylin stimulation of Cl- secretion in human intestinal T84 cells via cyclic guanosine monophosphate.

L R Forte 1, S L Eber 1, J T Turner 1, R H Freeman 1, K F Fok 1, M G Currie 1
PMCID: PMC443301  PMID: 8390480

Abstract

Intestinal salt and fluid secretion is stimulated by Escherichia coli heat-stable enterotoxins (ST) through activation of a membrane guanylate cyclase found in the intestine. Guanylin is an endogenous intestinal peptide that has structural similarity to the bacterial peptides. Synthetic preparations of guanylin or E. coli ST 5-17 stimulated Cl- secretion in T84 cells cultured on semipermeable membranes as measured by increases in short circuit current (Isc). The guanylin/ST receptors appeared to be on the apical surface of T84 cells, since addition of guanylin to the apical, but not basolateral, reservoir stimulated Isc. Bumetanide added to the basolateral side effectively inhibited the Isc responses of T84 cells to either guanylin or ST 5-17. Guanylin appeared to be about one-tenth as potent as ST in stimulating transepithelial Cl- secretion. Guanylin and E. coli ST 5-17 both caused massive (> 1,000-fold) increases in cGMP levels in T84 cells, but guanylin was less potent than ST. Both peptides fully inhibited the binding of 125I-ST to receptor sites on intact T84 cells. The radioligand binding data obtained with guanylin or ST 5-17 best fit a model predicting two receptors with different affinity for these ligands. The Ki values for guanylin were 19 +/- 5 nM and 1.3 +/- 0.5 microM, whereas the Ki values for ST 5-17 were 78 +/- 38 pM and 4.9 +/- 1.4 nM. We conclude that guanylin stimulated Cl- secretion via the second messenger, cGMP, in T84 human colon cells. At least two guanylin receptors with different affinities for these ligands may exist in the cultured T84 cells. It may be postulated that guanylin is an endogenous hormone that controls intestinal Cl- secretion by a paracrine mechanism via cGMP and that E. coli ST stimulates Cl- secretion by virtue of an opportunistic mechanism through activation of guanylin receptors.

Full text

PDF
2423

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng Y., Prusoff W. H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol. 1973 Dec 1;22(23):3099–3108. doi: 10.1016/0006-2952(73)90196-2. [DOI] [PubMed] [Google Scholar]
  2. Chinkers M., Garbers D. L. Signal transduction by guanylyl cyclases. Annu Rev Biochem. 1991;60:553–575. doi: 10.1146/annurev.bi.60.070191.003005. [DOI] [PubMed] [Google Scholar]
  3. Currie M. G., Fok K. F., Kato J., Moore R. J., Hamra F. K., Duffin K. L., Smith C. E. Guanylin: an endogenous activator of intestinal guanylate cyclase. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):947–951. doi: 10.1073/pnas.89.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dharmsathaphorn K., Mandel K. G., Masui H., McRoberts J. A. Vasoactive intestinal polypeptide-induced chloride secretion by a colonic epithelial cell line. Direct participation of a basolaterally localized Na+,K+,Cl- cotransport system. J Clin Invest. 1985 Feb;75(2):462–471. doi: 10.1172/JCI111721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dharmsathaphorn K., Pandol S. J. Mechanism of chloride secretion induced by carbachol in a colonic epithelial cell line. J Clin Invest. 1986 Feb;77(2):348–354. doi: 10.1172/JCI112311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Field M., Graf L. H., Jr, Laird W. J., Smith P. L. Heat-stable enterotoxin of Escherichia coli: in vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2800–2804. doi: 10.1073/pnas.75.6.2800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Forte L. R., Krause W. J., Freeman R. H. Receptors and cGMP signalling mechanism for E. coli enterotoxin in opossum kidney. Am J Physiol. 1988 Nov;255(5 Pt 2):F1040–F1046. doi: 10.1152/ajprenal.1988.255.5.F1040. [DOI] [PubMed] [Google Scholar]
  8. Forte L. R., Thorne P. K., Eber S. L., Krause W. J., Freeman R. H., Francis S. H., Corbin J. D. Stimulation of intestinal Cl- transport by heat-stable enterotoxin: activation of cAMP-dependent protein kinase by cGMP. Am J Physiol. 1992 Sep;263(3 Pt 1):C607–C615. doi: 10.1152/ajpcell.1992.263.3.C607. [DOI] [PubMed] [Google Scholar]
  9. Gemmell C. G. Comparative study of the nature and biological activities of bacterial enterotoxins. J Med Microbiol. 1984 Jun;17(3):217–235. doi: 10.1099/00222615-17-3-217. [DOI] [PubMed] [Google Scholar]
  10. Giannella R. A. Pathogenesis of acute bacterial diarrheal disorders. Annu Rev Med. 1981;32:341–357. doi: 10.1146/annurev.me.32.020181.002013. [DOI] [PubMed] [Google Scholar]
  11. Guarino A., Cohen M., Thompson M., Dharmsathaphorn K., Giannella R. T84 cell receptor binding and guanyl cyclase activation by Escherichia coli heat-stable toxin. Am J Physiol. 1987 Dec;253(6 Pt 1):G775–G780. doi: 10.1152/ajpgi.1987.253.6.G775. [DOI] [PubMed] [Google Scholar]
  12. Hughes J. M., Murad F., Chang B., Guerrant R. L. Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature. 1978 Feb 23;271(5647):755–756. doi: 10.1038/271755a0. [DOI] [PubMed] [Google Scholar]
  13. Huott P. A., Liu W., McRoberts J. A., Giannella R. A., Dharmsathaphorn K. Mechanism of action of Escherichia coli heat stable enterotoxin in a human colonic cell line. J Clin Invest. 1988 Aug;82(2):514–523. doi: 10.1172/JCI113626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krause W. J., Freeman R. H., Fort L. R. Autoradiographic demonstration of specific binding sites for E. coli enterotoxin in various epithelia of the North American opossum. Cell Tissue Res. 1990 May;260(2):387–394. doi: 10.1007/BF00318641. [DOI] [PubMed] [Google Scholar]
  15. Levine S. A., Donowitz M., Watson A. J., Sharp G. W., Crane J. K., Weikel C. S. Characterization of the synergistic interaction of Escherichia coli heat-stable toxin and carbachol. Am J Physiol. 1991 Oct;261(4 Pt 1):G592–G601. doi: 10.1152/ajpgi.1991.261.4.G592. [DOI] [PubMed] [Google Scholar]
  16. Nobles M., Diener M., Rummel W. Segment-specific effects of the heat-stable enterotoxin of E. coli on electrolyte transport in the rat colon. Eur J Pharmacol. 1991 Sep 17;202(2):201–211. doi: 10.1016/0014-2999(91)90295-2. [DOI] [PubMed] [Google Scholar]
  17. Ozaki H., Sato T., Kubota H., Hata Y., Katsube Y., Shimonishi Y. Molecular structure of the toxin domain of heat-stable enterotoxin produced by a pathogenic strain of Escherichia coli. A putative binding site for a binding protein on rat intestinal epithelial cell membranes. J Biol Chem. 1991 Mar 25;266(9):5934–5941. [PubMed] [Google Scholar]
  18. Schulz S., Green C. K., Yuen P. S., Garbers D. L. Guanylyl cyclase is a heat-stable enterotoxin receptor. Cell. 1990 Nov 30;63(5):941–948. doi: 10.1016/0092-8674(90)90497-3. [DOI] [PubMed] [Google Scholar]
  19. Weymer A., Huott P., Liu W., McRoberts J. A., Dharmsathaphorn K. Chloride secretory mechanism induced by prostaglandin E1 in a colonic epithelial cell line. J Clin Invest. 1985 Nov;76(5):1828–1836. doi: 10.1172/JCI112175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. White A. A., Krause W. J., Turner J. T., Forte L. R. Opossum kidney contains a functional receptor for the Escherichia coli heat-stable enterotoxin. Biochem Biophys Res Commun. 1989 Feb 28;159(1):363–367. doi: 10.1016/0006-291x(89)92447-9. [DOI] [PubMed] [Google Scholar]
  21. Wiegand R. C., Kato J., Currie M. G. Rat guanylin cDNA: characterization of the precursor of an endogenous activator of intestinal guanylate cyclase. Biochem Biophys Res Commun. 1992 Jun 30;185(3):812–817. doi: 10.1016/0006-291x(92)91699-q. [DOI] [PubMed] [Google Scholar]
  22. Wiegand R. C., Kato J., Huang M. D., Fok K. F., Kachur J. F., Currie M. G. Human guanylin: cDNA isolation, structure, and activity. FEBS Lett. 1992 Oct 19;311(2):150–154. doi: 10.1016/0014-5793(92)81387-2. [DOI] [PubMed] [Google Scholar]
  23. de Sauvage F. J., Keshav S., Kuang W. J., Gillett N., Henzel W., Goeddel D. V. Precursor structure, expression, and tissue distribution of human guanylin. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9089–9093. doi: 10.1073/pnas.89.19.9089. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES