Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jun;91(6):2497–2503. doi: 10.1172/JCI116485

Enzymatic methyl esterification of erythrocyte membrane proteins is impaired in chronic renal failure. Evidence for high levels of the natural inhibitor S-adenosylhomocysteine.

A F Pema 1, D Ingrosso 1, V Zappia 1, P Galletti 1, G Capasso 1, N G De Santo 1
PMCID: PMC443310  PMID: 8514862

Abstract

The enzyme protein carboxyl methyltransferase type II has been recently shown to play a crucial role in the repair of damaged proteins. S-adenosylmethionine (AdoMet) is the methyl donor of the reaction, and its demethylated product, S-adenosylhomocysteine (AdoHcy), is the natural inhibitor of this reaction, as well as of most AdoMet-dependent methylations. We examined erythrocyte membrane protein methyl esterification in chronic renal failure (CRF) patients on conservative treatment or hemodialyzed to detect possible alterations of the methylation pattern, in a condition where a state of disrupted red blood cell function is present. We observed a significant reduction in membrane protein methyl esterification in both groups, compared to control. The decrease was particularly evident for cytoskeletal component ankyrin, which is known to be involved in membrane stability and integrity. Moreover, we observed a severalfold rise in AdoHcy levels, while AdoMet concentration was comparable to that detected in the control, resulting in a lower [AdoMet]/[AdoHcy] ratio (P < 0.001). Our findings show an impairment of this posttranslational modification of proteins, associated with high AdoHcy intracellular concentration in CRF. The data are consistent with the notion that, in CRF, structural damages accumulate in erythrocyte membrane proteins, and are not adequately repaired.

Full text

PDF
2497

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahl R. Effect of inhibitors of methylation on early and late interferon synthesis in bovine kidney cell cultures. J Interferon Res. 1981 Feb;1(2):203–218. doi: 10.1089/jir.1981.1.203. [DOI] [PubMed] [Google Scholar]
  2. Akmal M., Telfer N., Ansari A. N., Massry S. G. Erythrocyte survival in chronic renal failure. Role of secondary hyperparathyroidism. J Clin Invest. 1985 Oct;76(4):1695–1698. doi: 10.1172/JCI112157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barber J. R., Clarke S. Membrane protein carboxyl methylation increases with human erythrocyte age. Evidence for an increase in the number of methylatable sites. J Biol Chem. 1983 Jan 25;258(2):1189–1196. [PubMed] [Google Scholar]
  4. Best L., Lebrun P., Saceda M., Garcia-Morales P., Hubinont C., Juvent M., Herchuelz A., Malaisse-Lagae F., Valverde I., Malaisse W. J. Impairment of insulin release by methylation inhibitors. Biochem Pharmacol. 1984 Jul 1;33(13):2033–2039. doi: 10.1016/0006-2952(84)90570-7. [DOI] [PubMed] [Google Scholar]
  5. Beutler E., Blume K. G., Kaplan J. C., Löhr G. W., Ramot B., Valentine W. N. International Committee for Standardization in Haematology: recommended methods for red-cell enzyme analysis. Br J Haematol. 1977 Feb;35(2):331–340. doi: 10.1111/j.1365-2141.1977.tb00589.x. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  7. Chauveau P., Chadefaux B., Coudé M., Aupetit J., Hannedouche T., Kamoun P., Jungers P. Increased plasma homocysteine concentration in patients with chronic renal failure. Miner Electrolyte Metab. 1992;18(2-5):196–198. [PubMed] [Google Scholar]
  8. Cools M., Hasobe M., De Clercq E., Borchardt R. T. Mechanism of the synergistic antiviral and cytostatic activity of (RS)-3-(adenin-9-yl)-2-hydroxypropanoic acid isobutyl ester and D,L-homocysteine. Biochem Pharmacol. 1990 Jan 1;39(1):195–202. doi: 10.1016/0006-2952(90)90665-8. [DOI] [PubMed] [Google Scholar]
  9. Corry D. B., Lee D. B., Tuck M. L. A kinetic study of cation transport in erythrocytes from uremic patients. Kidney Int. 1987 Aug;32(2):256–260. doi: 10.1038/ki.1987.200. [DOI] [PubMed] [Google Scholar]
  10. DE LA HABA G., CANTONI G. L. The enzymatic synthesis of S-adenosyl-L-homocysteine from adenosine and homocysteine. J Biol Chem. 1959 Mar;234(3):603–608. [PubMed] [Google Scholar]
  11. Duerre J. A., DiMaria P., Kim S., Paik W. K. Current status of protein methylation in carcinogenesis. Crit Rev Oncog. 1991;2(2):97–108. [PubMed] [Google Scholar]
  12. Eschbach J. W., Egrie J. C., Downing M. R., Browne J. K., Adamson J. W. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med. 1987 Jan 8;316(2):73–78. doi: 10.1056/NEJM198701083160203. [DOI] [PubMed] [Google Scholar]
  13. Fadda G. Z., Hajjar S. M., Perna A. F., Zhou X. J., Lipson L. G., Massry S. G. On the mechanism of impaired insulin secretion in chronic renal failure. J Clin Invest. 1991 Jan;87(1):255–261. doi: 10.1172/JCI114979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  15. Freitag C., Clarke S. Reversible methylation of cytoskeletal and membrane proteins in intact human erythrocytes. J Biol Chem. 1981 Jun 25;256(12):6102–6108. [PubMed] [Google Scholar]
  16. Galletti P., Ciardiello A., Ingrosso D., Di Donato A., D'Alessio G. Repair of isopeptide bonds by protein carboxyl O-methyltransferase: seminal ribonuclease as a model system. Biochemistry. 1988 Mar 8;27(5):1752–1757. doi: 10.1021/bi00405a055. [DOI] [PubMed] [Google Scholar]
  17. Galletti P., Ingrosso D., Nappi A., Gragnaniello V., Iolascon A., Pinto L. Increased methyl esterification of membrane proteins in aged red-blood cells. Preferential esterification of ankyrin and band-4.1 cytoskeletal proteins. Eur J Biochem. 1983 Sep 1;135(1):25–31. doi: 10.1111/j.1432-1033.1983.tb07613.x. [DOI] [PubMed] [Google Scholar]
  18. Galletti P., Ingrosso D., Pontoni G., Oliva A., Zappia V. Mechanism of protein carboxyl methyl transfer reactions: structural requirements of methyl accepting substrates. Adv Exp Med Biol. 1988;231:229–245. doi: 10.1007/978-1-4684-9042-8_18. [DOI] [PubMed] [Google Scholar]
  19. Galletti P., Ki Paik W., Kim S. Methyl acceptors for protein methylase II from human-erythrocyte membrane. Eur J Biochem. 1979 Jun;97(1):221–227. doi: 10.1111/j.1432-1033.1979.tb13106.x. [DOI] [PubMed] [Google Scholar]
  20. Gilbert J. M., Fowler A., Bleibaum J., Clarke S. Purification of homologous protein carboxyl methyltransferase isozymes from human and bovine erythrocytes. Biochemistry. 1988 Jul 12;27(14):5227–5233. doi: 10.1021/bi00414a042. [DOI] [PubMed] [Google Scholar]
  21. Hoffman R. M. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta. 1984;738(1-2):49–87. doi: 10.1016/0304-419x(84)90019-2. [DOI] [PubMed] [Google Scholar]
  22. Inauen W., Stäubli M., Descoeudres C., Galeazzi R. L., Straub P. W. Erythrocyte deformability in dialysed and non-dialysed uraemic patients. Eur J Clin Invest. 1982 Apr;12(2):173–176. doi: 10.1111/j.1365-2362.1982.tb00955.x. [DOI] [PubMed] [Google Scholar]
  23. Ingrosso D., Clarke S. Human erythrocyte D-aspartyl/L-isoaspartyl methyltransferases: enzymes that recognize age-damaged proteins. Adv Exp Med Biol. 1991;307:263–276. doi: 10.1007/978-1-4684-5985-2_24. [DOI] [PubMed] [Google Scholar]
  24. Ingrosso D., Fowler A. V., Bleibaum J., Clarke S. Sequence of the D-aspartyl/L-isoaspartyl protein methyltransferase from human erythrocytes. Common sequence motifs for protein, DNA, RNA, and small molecule S-adenosylmethionine-dependent methyltransferases. J Biol Chem. 1989 Nov 25;264(33):20131–20139. [PubMed] [Google Scholar]
  25. Ingrosso D., Kagan R. M., Clarke S. Distinct C-terminal sequences of isozymes I and II of the human erythrocyte L-isoaspartyl/D-aspartyl protein methyltransferase. Biochem Biophys Res Commun. 1991 Feb 28;175(1):351–358. doi: 10.1016/s0006-291x(05)81242-2. [DOI] [PubMed] [Google Scholar]
  26. Johnson B. A., Langmack E. L., Aswad D. W. Partial repair of deamidation-damaged calmodulin by protein carboxyl methyltransferase. J Biol Chem. 1987 Sep 5;262(25):12283–12287. [PubMed] [Google Scholar]
  27. Johnson B. A., Murray E. D., Jr, Clarke S., Glass D. B., Aswad D. W. Protein carboxyl methyltransferase facilitates conversion of atypical L-isoaspartyl peptides to normal L-aspartyl peptides. J Biol Chem. 1987 Apr 25;262(12):5622–5629. [PubMed] [Google Scholar]
  28. Kaji D., Thomas K. Na+-K+ pump in chronic renal failure. Am J Physiol. 1987 May;252(5 Pt 2):F785–F793. doi: 10.1152/ajprenal.1987.252.5.F785. [DOI] [PubMed] [Google Scholar]
  29. Kelly R. A., Canessa M. L., Steinman T. I., Mitch W. E. Hemodialysis and red cell cation transport in uremia: role of membrane free fatty acids. Kidney Int. 1989 Feb;35(2):595–603. doi: 10.1038/ki.1989.28. [DOI] [PubMed] [Google Scholar]
  30. Kim S., Galletti P., Paik W. K. In vivo carboxyl methylation of human eruthrocyte membrane proteins. J Biol Chem. 1980 Jan 25;255(2):338–341. [PubMed] [Google Scholar]
  31. Laidlaw S. A., Smolin L. A., Davidson W. D., Kopple J. D. Sulfur amino acids in maintenance hemodialysis patients. Kidney Int Suppl. 1987 Oct;22:S191–S196. [PubMed] [Google Scholar]
  32. Lowenson J. D., Clarke S. Spontaneous degradation and enzymatic repair of aspartyl and asparaginyl residues in aging red cell proteins analyzed by computer simulation. Gerontology. 1991;37(1-3):128–151. doi: 10.1159/000213255. [DOI] [PubMed] [Google Scholar]
  33. Macfarlane D. E. Inhibitors of cyclic nucleotide phosphodiesterases inhibit protein carboxyl methylation in intact blood platelets. J Biol Chem. 1984 Jan 25;259(2):1357–1362. [PubMed] [Google Scholar]
  34. Maduell F., Fernandez J., Díez J. Alterations of the Cl-/NaCO3- anion exchanger in erythrocytes of uraemic patients. Nephrol Dial Transplant. 1990;5(12):1018–1022. doi: 10.1093/ndt/5.12.1018. [DOI] [PubMed] [Google Scholar]
  35. McFadden P. N., Clarke S. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins. Proc Natl Acad Sci U S A. 1987 May;84(9):2595–2599. doi: 10.1073/pnas.84.9.2595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. McFadden R. G., Fraher L. J. Inhibitors of membrane transmethylation reactions prevent the lymphocyte chemokinetic response. Immunol Lett. 1990 Dec;26(3):211–215. doi: 10.1016/0165-2478(90)90148-j. [DOI] [PubMed] [Google Scholar]
  37. Newberne P. M., Rogers A. E. Labile methyl groups and the promotion of cancer. Annu Rev Nutr. 1986;6:407–432. doi: 10.1146/annurev.nu.06.070186.002203. [DOI] [PubMed] [Google Scholar]
  38. Oden K. L., Clarke S. S-adenosyl-L-methionine synthetase from human erythrocytes: role in the regulation of cellular S-adenosylmethionine levels. Biochemistry. 1983 Jun 7;22(12):2978–2986. doi: 10.1021/bi00281a030. [DOI] [PubMed] [Google Scholar]
  39. Oliva A., Galletti P., Zappia V., Paik W. K., Kim S. Studies on substrate specificity of S-adenosylmethionine: protein-carboxyl methyltransferase from calf brain. Eur J Biochem. 1980 Mar;104(2):595–602. doi: 10.1111/j.1432-1033.1980.tb04463.x. [DOI] [PubMed] [Google Scholar]
  40. Perna A. F., Smogorzewski M., Massry S. G. Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int. 1989 Sep;36(3):453–457. doi: 10.1038/ki.1989.216. [DOI] [PubMed] [Google Scholar]
  41. Pike M. C., DeMeester C. A. Inhibition of phosphoinositide metabolism in human polymorphonuclear leukocytes by S-adenosylhomocysteine. J Biol Chem. 1988 Mar 15;263(8):3592–3599. [PubMed] [Google Scholar]
  42. Shaw A. B. Haemolysis in chronic renal failure. Br Med J. 1967 Apr 22;2(5546):213–216. doi: 10.1136/bmj.2.5546.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wilcken D. E., Dudman N. P., Tyrrell P. A., Robertson M. R. Folic acid lowers elevated plasma homocysteine in chronic renal insufficiency: possible implications for prevention of vascular disease. Metabolism. 1988 Jul;37(7):697–701. doi: 10.1016/0026-0495(88)90093-5. [DOI] [PubMed] [Google Scholar]
  44. Wilcken D. E., Gupta V. J., Reddy S. G. Accumulation of sulphur-containing amino acids including cysteine-homocysteine in patients on maintenance haemodialysis. Clin Sci (Lond) 1980 May;58(5):427–430. doi: 10.1042/cs0580427. [DOI] [PubMed] [Google Scholar]
  45. Zappia V., Zydek-Cwick R., Schlenk F. The specificity of S-adenosylmethionine derivatives in methyl transfer reactions. J Biol Chem. 1969 Aug 25;244(16):4499–4509. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES