Abstract
The cardioprotective effects of an mAb to P-selectin designated mAb PB1.3 was examined in a feline model of myocardial ischemia (MI) and reperfusion. PB1.3 (1 mg/kg), administered after 80 min of ischemia (i.e., 10 min before reperfusion), significantly attenuated myocardial necrosis compared to a non-blocking mAb (NBP1.6) for P-selectin (15 +/- 3 vs 35 +/- 3% of area at risk, P < 0.01). Moreover, endothelial release of endothelium derived relaxing factor, as assessed by relaxation to acetylcholine, was also significantly preserved in ischemic-reperfused coronary arteries isolated from cats treated with mAb PB1.3 compared to mAb NBP1.6 (67 +/- 6 vs 11 +/- 3, P < 0.01). This endothelial preservation was directly related to reduced endothelial adherence of PMNs in ischemic-reperfused coronary arteries. Immunohistochemical localization of P-selectin was significantly upregulated in the cytoplasm of endothelial cells that lined coronary arteries and veins after 90 min of ischemia and 20 min of reperfusion. The principal site of intracytoplasmic expression was in venous vessels. mAb PB1.3 significantly decreased (P < 0.01) adherence of unstimulated PMNs to thrombin and histamine stimulated endothelial cells in a concentration-dependent manner in vitro. These results demonstrate that PMN adherence to endothelium by P-selectin is an important early consequence of reperfusion injury, and a specific monoclonal antibody to P-selectin exerts significant endothelial preservation and cardioprotection in myocardial ischemia and reperfusion.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beckstead J. H., Stenberg P. E., McEver R. P., Shuman M. A., Bainton D. F. Immunohistochemical localization of membrane and alpha-granule proteins in human megakaryocytes: application to plastic-embedded bone marrow biopsy specimens. Blood. 1986 Feb;67(2):285–293. [PubMed] [Google Scholar]
- Boogaerts M. A., Yamada O., Jacob H. S., Moldow C. F. Enhancement of granulocyte-endothelial cell adherence and granulocyte-induced cytotoxicity by platelet release products. Proc Natl Acad Sci U S A. 1982 Nov;79(22):7019–7023. doi: 10.1073/pnas.79.22.7019. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engler R. L., Schmid-Schönbein G. W., Pavelec R. S. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. Am J Pathol. 1983 Apr;111(1):98–111. [PMC free article] [PubMed] [Google Scholar]
- Entman M. L., Michael L., Rossen R. D., Dreyer W. J., Anderson D. C., Taylor A. A., Smith C. W. Inflammation in the course of early myocardial ischemia. FASEB J. 1991 Aug;5(11):2529–2537. doi: 10.1096/fasebj.5.11.1868978. [DOI] [PubMed] [Google Scholar]
- Harlan J. M. Leukocyte-endothelial interactions. Blood. 1985 Mar;65(3):513–525. [PubMed] [Google Scholar]
- Jolly S. R., Schumacher W. A., Kunkel S. L., Abrams G. D., Liddicoat J., Lucchesi B. R. Platelet depletion in experimental myocardial infarction. Basic Res Cardiol. 1985 May-Jun;80(3):269–279. doi: 10.1007/BF01907903. [DOI] [PubMed] [Google Scholar]
- Kloner R. A., Giacomelli F., Alker K. J., Hale S. L., Matthews R., Bellows S. Influx of neutrophils into the walls of large epicardial coronary arteries in response to ischemia/reperfusion. Circulation. 1991 Oct;84(4):1758–1772. doi: 10.1161/01.cir.84.4.1758. [DOI] [PubMed] [Google Scholar]
- Ko W., Hawes A. S., Lazenby W. D., Calvano S. E., Shin Y. T., Zelano J. A., Antonacci A. C., Isom O. W., Krieger K. H. Myocardial reperfusion injury. Platelet-activating factor stimulates polymorphonuclear leukocyte hydrogen peroxide production during myocardial reperfusion. J Thorac Cardiovasc Surg. 1991 Aug;102(2):297–308. [PubMed] [Google Scholar]
- Kubes P., Suzuki M., Granger D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):4651–4655. doi: 10.1073/pnas.88.11.4651. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lafrado L. J., Olsen R. G. Demonstration of depressed polymorphonuclear leukocyte function in nonviremic FeLV-infected cats. Cancer Invest. 1986;4(4):297–300. doi: 10.3109/07357908609017509. [DOI] [PubMed] [Google Scholar]
- Litt M. R., Jeremy R. W., Weisman H. F., Winkelstein J. A., Becker L. C. Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. Circulation. 1989 Dec;80(6):1816–1827. doi: 10.1161/01.cir.80.6.1816. [DOI] [PubMed] [Google Scholar]
- Lucchesi B. R., Mickelson J. K., Homeister J. W., Jackson C. V. Interaction of the formed elements of blood with the coronary vasculature in vivo. Fed Proc. 1987 Jan;46(1):63–72. [PubMed] [Google Scholar]
- Ma X. L., Lefer D. J., Lefer A. M., Rothlein R. Coronary endothelial and cardiac protective effects of a monoclonal antibody to intercellular adhesion molecule-1 in myocardial ischemia and reperfusion. Circulation. 1992 Sep;86(3):937–946. doi: 10.1161/01.cir.86.3.937. [DOI] [PubMed] [Google Scholar]
- Ma X. L., Tsao P. S., Lefer A. M. Antibody to CD-18 exerts endothelial and cardiac protective effects in myocardial ischemia and reperfusion. J Clin Invest. 1991 Oct;88(4):1237–1243. doi: 10.1172/JCI115427. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ma X. L., Tsao P. S., Viehman G. E., Lefer A. M. Neutrophil-mediated vasoconstriction and endothelial dysfunction in low-flow perfusion-reperfused cat coronary artery. Circ Res. 1991 Jul;69(1):95–106. doi: 10.1161/01.res.69.1.95. [DOI] [PubMed] [Google Scholar]
- Ma X. L., Weyrich A. S., Krantz S., Lefer A. M. Mechanisms of the cardioprotective actions of WEB-2170, bepafant, a platelet activating factor antagonist, in myocardial ischemia and reperfusion. J Pharmacol Exp Ther. 1992 Mar;260(3):1229–1236. [PubMed] [Google Scholar]
- Ma X. L., Weyrich A. S., Lefer D. J., Lefer A. M. Diminished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to coronary endothelium. Circ Res. 1993 Feb;72(2):403–412. doi: 10.1161/01.res.72.2.403. [DOI] [PubMed] [Google Scholar]
- McEver R. P., Beckstead J. H., Moore K. L., Marshall-Carlson L., Bainton D. F. GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J Clin Invest. 1989 Jul;84(1):92–99. doi: 10.1172/JCI114175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McEver R. P. GMP-140: a receptor for neutrophils and monocytes on activated platelets and endothelium. J Cell Biochem. 1991 Feb;45(2):156–161. doi: 10.1002/jcb.240450206. [DOI] [PubMed] [Google Scholar]
- McEver R. P. Selectins: novel receptors that mediate leukocyte adhesion during inflammation. Thromb Haemost. 1991 Mar 4;65(3):223–228. [PubMed] [Google Scholar]
- Moore K. L., Stults N. L., Diaz S., Smith D. F., Cummings R. D., Varki A., McEver R. P. Identification of a specific glycoprotein ligand for P-selectin (CD62) on myeloid cells. J Cell Biol. 1992 Jul;118(2):445–456. doi: 10.1083/jcb.118.2.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mullane K. M., McGiff J. C. Platelet depletion and infarct size in an occlusion-reperfusion model of myocardial ischemia in anesthetized dogs. J Cardiovasc Pharmacol. 1985 Jul-Aug;7(4):733–738. doi: 10.1097/00005344-198507000-00018. [DOI] [PubMed] [Google Scholar]
- Mulligan M. S., Johnson K. J., Todd R. F., 3rd, Issekutz T. B., Miyasaka M., Tamatani T., Smith C. W., Anderson D. C., Ward P. A. Requirements for leukocyte adhesion molecules in nephrotoxic nephritis. J Clin Invest. 1993 Feb;91(2):577–587. doi: 10.1172/JCI116237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palluy O., Morliere L., Gris J. C., Bonne C., Modat G. Hypoxia/reoxygenation stimulates endothelium to promote neutrophil adhesion. Free Radic Biol Med. 1992;13(1):21–30. doi: 10.1016/0891-5849(92)90161-9. [DOI] [PubMed] [Google Scholar]
- Patel K. D., Zimmerman G. A., Prescott S. M., McEver R. P., McIntyre T. M. Oxygen radicals induce human endothelial cells to express GMP-140 and bind neutrophils. J Cell Biol. 1991 Feb;112(4):749–759. doi: 10.1083/jcb.112.4.749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel K. D., Zimmerman G. A., Prescott S. M., McIntyre T. M. Novel leukocyte agonists are released by endothelial cells exposed to peroxide. J Biol Chem. 1992 Jul 25;267(21):15168–15175. [PubMed] [Google Scholar]
- Perry M. A., Granger D. N. Leukocyte adhesion in local versus hemorrhage-induced ischemia. Am J Physiol. 1992 Sep;263(3 Pt 2):H810–H815. doi: 10.1152/ajpheart.1992.263.3.H810. [DOI] [PubMed] [Google Scholar]
- Picker L. J., Warnock R. A., Burns A. R., Doerschuk C. M., Berg E. L., Butcher E. C. The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell. 1991 Sep 6;66(5):921–933. doi: 10.1016/0092-8674(91)90438-5. [DOI] [PubMed] [Google Scholar]
- Polley M. J., Phillips M. L., Wayner E., Nudelman E., Singhal A. K., Hakomori S., Paulson J. C. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6224–6228. doi: 10.1073/pnas.88.14.6224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. W., Marlin S. D., Rothlein R., Toman C., Anderson D. C. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest. 1989 Jun;83(6):2008–2017. doi: 10.1172/JCI114111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith C. W., Rothlein R., Hughes B. J., Mariscalco M. M., Rudloff H. E., Schmalstieg F. C., Anderson D. C. Recognition of an endothelial determinant for CD 18-dependent human neutrophil adherence and transendothelial migration. J Clin Invest. 1988 Nov;82(5):1746–1756. doi: 10.1172/JCI113788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsao P. S., Aoki N., Lefer D. J., Johnson G., 3rd, Lefer A. M. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990 Oct;82(4):1402–1412. doi: 10.1161/01.cir.82.4.1402. [DOI] [PubMed] [Google Scholar]
- Tsao P. S., Lefer A. M. Time course and mechanism of endothelial dysfunction in isolated ischemic- and hypoxic-perfused rat hearts. Am J Physiol. 1990 Dec;259(6 Pt 2):H1660–H1666. doi: 10.1152/ajpheart.1990.259.6.H1660. [DOI] [PubMed] [Google Scholar]
- Turner S. R., Tainer J. A., Lynn W. S. Biogenesis of chemotactic molecules by the arachidonate lipoxygenase system of platelets. Nature. 1975 Oct 23;257(5528):680–681. doi: 10.1038/257680a0. [DOI] [PubMed] [Google Scholar]
- VanBenthuysen K. M., McMurtry I. F., Horwitz L. D. Reperfusion after acute coronary occlusion in dogs impairs endothelium-dependent relaxation to acetylcholine and augments contractile reactivity in vitro. J Clin Invest. 1987 Jan;79(1):265–274. doi: 10.1172/JCI112793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westby J., Hexeberg E., Olweus J., Myking O. L., Lekven J., Grong K. Blood flow regulation during acute regional ischemia in feline hearts: importance of postjunctional alpha 1- and alpha 2-adrenoceptors. J Cardiovasc Pharmacol. 1991 Oct;18(4):487–495. doi: 10.1097/00005344-199110000-00003. [DOI] [PubMed] [Google Scholar]
- Weyrich A. S., Ma X. L., Lefer A. M. The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation. 1992 Jul;86(1):279–288. doi: 10.1161/01.cir.86.1.279. [DOI] [PubMed] [Google Scholar]
- Yuan Y., Fleming B. P. A method for isolation and fluorescent labeling of rat neutrophils for intravital microvascular studies. Microvasc Res. 1990 Sep;40(2):218–229. doi: 10.1016/0026-2862(90)90021-i. [DOI] [PubMed] [Google Scholar]
- Zimmerman G. A., Prescott S. M., McIntyre T. M. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunol Today. 1992 Mar;13(3):93–100. doi: 10.1016/0167-5699(92)90149-2. [DOI] [PubMed] [Google Scholar]
- oude Egbrink M. G., Tangelder G. J., Slaaf D. W., Reneman R. S. Influence of platelet-vessel wall interactions on leukocyte rolling in vivo. Circ Res. 1992 Feb;70(2):355–363. doi: 10.1161/01.res.70.2.355. [DOI] [PubMed] [Google Scholar]
- von Andrian U. H., Chambers J. D., McEvoy L. M., Bargatze R. F., Arfors K. E., Butcher E. C. Two-step model of leukocyte-endothelial cell interaction in inflammation: distinct roles for LECAM-1 and the leukocyte beta 2 integrins in vivo. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7538–7542. doi: 10.1073/pnas.88.17.7538. [DOI] [PMC free article] [PubMed] [Google Scholar]