Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jun;91(6):2709–2713. doi: 10.1172/JCI116510

The thyroid gland is a major source of circulating T3 in the rat.

J P Chanoine 1, L E Braverman 1, A P Farwell 1, M Safran 1, S Alex 1, S Dubord 1, J L Leonard 1
PMCID: PMC443335  PMID: 8514878

Abstract

In rats, the respective contribution of the thyroid and peripheral tissues to the pool of T3 remains unclear. Most, if not all, of the circulating T3 produced by extrathyroidal sources is generated by 5'-deiodination of T4, catalyzed by the selenoenzyme, type I iodothyronine 5'-deiodinase (5'D-I). 5'D-I in the liver and kidney is almost completely lost in selenium deficiency, resulting in a marked decrease in T4 deiodination and an increase in circulating T4 levels. Surprisingly, circulating T3 levels are only marginally decreased by selenium deficiency. In this study, we used selenium deficiency and thyroidectomy to determine the relative contribution of thyroidal and extrathyroidal sources to the total body pool of T3. Despite maintaining normal serum T4 concentrations in thyroidectomized rats by T4 replacement, serum T3 concentrations remained 55% lower than those seen in intact rats. In intact rats, restricting selenium intake had no effect on circulating T3 concentrations. Decreasing 5'D-I activity in the liver and kidney by > 90% by restricting selenium intake resulted in a further 20% decrease in serum T3 concentrations in the thyroidectomized, T4 replaced rats, suggesting that peripheral T4 to T3 conversion in these tissues generates approximately 20% of the circulating T3 concentrations. While dietary selenium restriction markedly decreased intrahepatic selenium content (> 95%), intrathyroidal selenium content decreased by only 27%. Further, thyroid 5'D-I activity actually increased 25% in the selenium deficient rats, suggesting the continued synthesis of this selenoenzyme over selenoproteins in other tissues in selenium deficiency. These data demonstrate that the thyroid is the major source of T3 in the rat and suggest that intrathyroidal T4 to T3 conversion may account for most of the T3 released by the thyroid.

Full text

PDF
2709

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abend S. L., Fang S. L., Alex S., Braverman L. E., Leonard J. L. Rapid alteration in circulating free thyroxine modulates pituitary type II 5' deiodinase and basal thyrotropin secretion in the rat. J Clin Invest. 1991 Sep;88(3):898–903. doi: 10.1172/JCI115392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arthur J. R., Nicol F., Beckett G. J. Hepatic iodothyronine 5'-deiodinase. The role of selenium. Biochem J. 1990 Dec 1;272(2):537–540. doi: 10.1042/bj2720537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beckett G. J., Beddows S. E., Morrice P. C., Nicol F., Arthur J. R. Inhibition of hepatic deiodination of thyroxine is caused by selenium deficiency in rats. Biochem J. 1987 Dec 1;248(2):443–447. doi: 10.1042/bj2480443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Beckett G. J., MacDougall D. A., Nicol F., Arthur R. Inhibition of type I and type II iodothyronine deiodinase activity in rat liver, kidney and brain produced by selenium deficiency. Biochem J. 1989 May 1;259(3):887–892. doi: 10.1042/bj2590887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Behne D., Hilmert H., Scheid S., Gessner H., Elger W. Evidence for specific selenium target tissues and new biologically important selenoproteins. Biochim Biophys Acta. 1988 Jul 14;966(1):12–21. doi: 10.1016/0304-4165(88)90123-7. [DOI] [PubMed] [Google Scholar]
  6. Behne D., Kyriakopoulos A., Meinhold H., Köhrle J. Identification of type I iodothyronine 5'-deiodinase as a selenoenzyme. Biochem Biophys Res Commun. 1990 Dec 31;173(3):1143–1149. doi: 10.1016/s0006-291x(05)80905-2. [DOI] [PubMed] [Google Scholar]
  7. Berry M. J., Banu L., Larsen P. R. Type I iodothyronine deiodinase is a selenocysteine-containing enzyme. Nature. 1991 Jan 31;349(6308):438–440. doi: 10.1038/349438a0. [DOI] [PubMed] [Google Scholar]
  8. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  9. Chada S., Whitney C., Newburger P. E. Post-transcriptional regulation of glutathione peroxidase gene expression by selenium in the HL-60 human myeloid cell line. Blood. 1989 Nov 15;74(7):2535–2541. [PubMed] [Google Scholar]
  10. Chanoine J. P., Safran M., Farwell A. P., Dubord S., Alex S., Stone S., Arthur J. R., Braverman L. E., Leonard J. L. Effects of selenium deficiency on thyroid hormone economy in rats. Endocrinology. 1992 Oct;131(4):1787–1792. doi: 10.1210/endo.131.4.1396324. [DOI] [PubMed] [Google Scholar]
  11. Chanoine J. P., Safran M., Farwell A. P., Tranter P., Ekenbarger D. M., Dubord S., Alex S., Arthur J. R., Beckett G. J., Braverman L. E. Selenium deficiency and type II 5'-deiodinase regulation in the euthyroid and hypothyroid rat: evidence of a direct effect of thyroxine. Endocrinology. 1992 Jul;131(1):479–484. doi: 10.1210/endo.131.1.1612029. [DOI] [PubMed] [Google Scholar]
  12. DiStefano J. J., 3rd, Jang M., Malone T. K., Broutman M. Comprehensive kinetics of triiodothyronine production, distribution, and metabolism in blood and tissue pools of the rat using optimized blood-sampling protocols. Endocrinology. 1982 Jan;110(1):198–213. doi: 10.1210/endo-110-1-198. [DOI] [PubMed] [Google Scholar]
  13. Emerson C. H., Lew R., Braverman L. E., DeVito W. J. Serum thyrotropin concentrations are more highly correlated with serum triiodothyronine concentrations than with serum thyroxine concentrations in thyroid hormone-infused thyroidectomized rats. Endocrinology. 1989 May;124(5):2415–2418. doi: 10.1210/endo-124-5-2415. [DOI] [PubMed] [Google Scholar]
  14. Erickson V. J., Cavalieri R. R., Rosenberg L. L. Thyroxine-5'-deiodinase of rat thyroid, but not that of liver, is dependent on thyrotropin. Endocrinology. 1982 Aug;111(2):434–440. doi: 10.1210/endo-111-2-434. [DOI] [PubMed] [Google Scholar]
  15. Golstein J., Corvilain B., Lamy F., Paquer D., Dumont J. E. Effects of a selenium deficient diet on thyroid function of normal and perchlorate treated rats. Acta Endocrinol (Copenh) 1988 Aug;118(4):495–502. doi: 10.1530/acta.0.1180495. [DOI] [PubMed] [Google Scholar]
  16. Kinlaw W. B., Schwartz H. L., Oppenheimer J. H. Decreased serum triiodothyronine in starving rats is due primarily to diminished thyroidal secretion of thyroxine. J Clin Invest. 1985 Apr;75(4):1238–1241. doi: 10.1172/JCI111821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laurberg P. Iodothyronine secretion from perfused dog thyroid lobes after prolonged thyrotropin treatment in vivo. Endocrinology. 1981 Nov;109(5):1560–1565. doi: 10.1210/endo-109-5-1560. [DOI] [PubMed] [Google Scholar]
  18. Laurberg P. Selective inhibition of the secretion of triiodothyronines from the perfused canine thyroid by propylthiouracil. Endocrinology. 1978 Sep;103(3):900–905. doi: 10.1210/endo-103-3-900. [DOI] [PubMed] [Google Scholar]
  19. Leonard J. L., Rosenberg I. N. Iodothyronine 5'-deiodinase from rat kidney: substrate specificity and the 5'-deiodination of reverse triiodothyronine. Endocrinology. 1980 Nov;107(5):1376–1383. doi: 10.1210/endo-107-5-1376. [DOI] [PubMed] [Google Scholar]
  20. Meinhold H., Campos-Barros A., Behne D. Effects of selenium and iodine deficiency on iodothyronine deiodinases in brain, thyroid and peripheral tissue. Acta Med Austriaca. 1992;19 (Suppl 1):8–12. [PubMed] [Google Scholar]
  21. Safran M., Farwell A. P., Leonard J. L. Evidence that type II 5'-deiodinase is not a selenoprotein. J Biol Chem. 1991 Jul 25;266(21):13477–13480. [PubMed] [Google Scholar]
  22. Schwartz H. L., Surks M. I., Oppenheimer J. H. Quantitation of extrathyroidal conversion of L-thyroxine to 3,5,3'-triiodo-L-thyronine in the rat. J Clin Invest. 1971 May;50(5):1124–1130. doi: 10.1172/JCI106584. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vagenakis A. G., Ingbar S. H., Braverman L. E. The relationship between thyroglobulin synthesis and intrathyroid iodine metabolism as indicated by the effects of cycloheximide in the rat. Endocrinology. 1974 Jun;94(6):1669–1680. doi: 10.1210/endo-94-6-1669. [DOI] [PubMed] [Google Scholar]
  24. Wu S. Y. Thyrotropin-mediated induction of thyroidal iodothyronine monodeiodinases in the dog. Endocrinology. 1983 Feb;112(2):417–424. doi: 10.1210/endo-112-2-417. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES