Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1993 Jun;91(6):2785–2790. doi: 10.1172/JCI116520

Sucrase-alpha-dextrinase in the rat. Postinsertional conversion to inactive molecular species by a carbohydrate-free diet.

R Quan 1, G M Gray 1
PMCID: PMC443345  PMID: 8514885

Abstract

Absence of dietary carbohydrate decreases both activities of intestinal brush border sucrase-alpha-dextrinase. We examined the molecular mechanism causing this decrease. Adult rats were fed chow (70% CHO) or matched carbohydrate-free (CHO-free) diet for 7 d. Sucrase activity decreased by 50% in whole homogenates and brush borders. Enzyme kinetics revealed no change in sucrose affinity (CHO-free Km = 18 mM, chow Km = 21 mM), but fewer active sites (CHO-free Vmax = 2,720, chow Vmax = 5,000 mumol/min per g protein). Intraintestinal pulse-labeling of [35S]methionine in vivo revealed no differences in incorporation into sucrase. Immunoreactive sucrase protein, assayed by ELISA and rocket immunoelectrophoresis, increased twofold per milliunit of sucrase enzymatic activity in CHO-free jejunum. Total immunosucrase (St), the sum of active and inactive enzyme (St = Sa+Si), was unchanged with carbohydrate withdrawal, but > 50% of the sucrase protein became inactive. SDS-PAGE of sucrase immunoprecipitates revealed alteration of alpha, beta, and gamma subunits in CHO-free animals: (a) alpha and beta subunits migrated farther (mass change--2 kD); and (b) the alpha subunit became diffuse or was a doublet and was less abundant than the beta subunit. Rather than representing loss of sucrase protein, the decline in sucrase activity is achieved with structural subunit changes, probably involving postinsertional processing.

Full text

PDF
2785

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahnen D. J., Mircheff A. K., Santiago N. A., Yoshioka C., Gray G. M. Intestinal surface aminooligopeptidase. Distinct molecular forms during assembly on intracellular membranes in vivo. J Biol Chem. 1983 May 10;258(9):5960–5966. [PubMed] [Google Scholar]
  2. Ahnen D. J., Santiago N. A., Cezard J. P., Gray G. M. Intestinal aminooligopeptidase. In vivo synthesis on intracellular membranes of rat jejunum. J Biol Chem. 1982 Oct 25;257(20):12129–12135. [PubMed] [Google Scholar]
  3. Allred J. B., Roman-Lopez C. R. Enzymatically inactive forms of acetyl-CoA carboxylase in rat liver mitochondria. Biochem J. 1988 May 1;251(3):881–885. doi: 10.1042/bj2510881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Allred J. B., Roman-Lopez C. R., Jurin R. R., McCune S. A. Mitochondrial storage forms of acetyl CoA carboxylase: mobilization/activation accounts for increased activity of the enzyme in liver of genetically obese Zucker rats. J Nutr. 1989 Mar;119(3):478–483. doi: 10.1093/jn/119.3.478. [DOI] [PubMed] [Google Scholar]
  5. BLAIR D. G., YAKIMETS W., TUBA J. Rat intestinal sucrase. II. The effects of rat age and sex and of diet on sucrase activity. Can J Biochem Physiol. 1963 Apr;41:917–929. [PubMed] [Google Scholar]
  6. Broyart J. P., Hugot J. P., Perret C., Porteu A. Molecular cloning and characterization of a rat intestinal sucrase-isomaltase cDNA. Regulation of sucrase-isomaltase gene expression by sucrose feeding. Biochim Biophys Acta. 1990 Sep 10;1087(1):61–67. doi: 10.1016/0167-4781(90)90121-h. [DOI] [PubMed] [Google Scholar]
  7. Cézard J. P., Broyart J. P., Cuisinier-Gleizes P., Mathieu H. Sucrase-isomaltase regulation by dietary sucrose in the rat. Gastroenterology. 1983 Jan;84(1):18–25. [PubMed] [Google Scholar]
  8. Deren J. J., Broitman S. A., Zamcheck N. Effect of diet upon intestinal disaccharidases and disaccharide absorption. J Clin Invest. 1967 Feb;46(2):186–195. doi: 10.1172/JCI105521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fujita M., Matsui H., Nagano K., Nakao M. Asymmetric distribution of ouabain-sensitive ATPase activity in rat intestinal mucosa. Biochim Biophys Acta. 1971 Apr 13;233(2):404–408. doi: 10.1016/0005-2736(71)90337-3. [DOI] [PubMed] [Google Scholar]
  10. Goda T., Bustamante S., Thornburg W., Koldovský O. Dietary-induced increase in lactase activity and in immunoreactive lactase in adult rat jejunum. Biochem J. 1984 Jul 1;221(1):261–263. doi: 10.1042/bj2210261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris R. A., Paxton R., Powell S. M., Goodwin G. W., Kuntz M. J., Han A. C. Regulation of branched-chain alpha-ketoacid dehydrogenase complex by covalent modification. Adv Enzyme Regul. 1986;25:219–237. doi: 10.1016/0065-2571(86)90016-6. [DOI] [PubMed] [Google Scholar]
  12. Jencks D. A., Mathews R. G. Allosteric inhibition of methylenetetrahydrofolate reductase by adenosylmethionine. Effects of adenosylmethionine and NADPH on the equilibrium between active and inactive forms of the enzyme and on the kinetics of approach to equilibrium. J Biol Chem. 1987 Feb 25;262(6):2485–2493. [PubMed] [Google Scholar]
  13. Naim H. Y., Sterchi E. E., Lentze M. J. Biosynthesis of the human sucrase-isomaltase complex. Differential O-glycosylation of the sucrase subunit correlates with its position within the enzyme complex. J Biol Chem. 1988 May 25;263(15):7242–7253. [PubMed] [Google Scholar]
  14. Nguyen T. D., Broyart J. P., Ngu K. T., Illescas A., Mircheff A. K., Gray G. M. Laterobasal membranes from intestinal epithelial cells: isolation free of intracellular membrane contaminants. J Membr Biol. 1987;98(3):197–205. doi: 10.1007/BF01871183. [DOI] [PubMed] [Google Scholar]
  15. Palfree R. G., Elliott B. E. An enzyme-linked immunosorbent assay (ELISA) for detergent solubilized Ia glycoproteins using nitrocellulose membrane discs. J Immunol Methods. 1982 Aug 13;52(3):395–408. doi: 10.1016/0022-1759(82)90010-2. [DOI] [PubMed] [Google Scholar]
  16. Porstmann B., Porstmann T., Nugel E. Comparison of chromogens for the determination of horseradish peroxidase as a marker in enzyme immunoassay. J Clin Chem Clin Biochem. 1981 Jul;19(7):435–439. doi: 10.1515/cclm.1981.19.7.435. [DOI] [PubMed] [Google Scholar]
  17. Puigserver A., Wicker C., Gaucher C. Aspects moléculaires de l'adaptation des enzymes pancréatiques et intestinales au régime alimentaire. Reprod Nutr Dev. 1985;25(4B):787–801. [PubMed] [Google Scholar]
  18. Reisenauer A. M., Gray G. M. Abrupt induction of a membrane digestive enzyme by its intraintestinal substrate. Science. 1985 Jan 4;227(4682):70–72. doi: 10.1126/science.3838079. [DOI] [PubMed] [Google Scholar]
  19. Riby J. E., Kretchmer N. Effect of dietary sucrose on synthesis and degradation of intestinal sucrase. Am J Physiol. 1984 Jun;246(6 Pt 1):G757–G763. doi: 10.1152/ajpgi.1984.246.6.G757. [DOI] [PubMed] [Google Scholar]
  20. Rosenweig N. S., Herman R. H. Time response of jejunal sucrase and maltase activity to a high sucrose diet in normal man. Gastroenterology. 1969 Mar;56(3):500–505. [PubMed] [Google Scholar]
  21. Shapiro G. L., Bulow S. D., Conklin K. A., Scheving L. A., Gray G. M. Postinsertional processing of sucrase-alpha-dextrinase precursor to authentic subunits: multiple step cleavage by trypsin. Am J Physiol. 1991 Nov;261(5 Pt 1):G847–G857. doi: 10.1152/ajpgi.1991.261.5.G847. [DOI] [PubMed] [Google Scholar]
  22. Smithson K. W., Gray G. M. Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush border aminopeptidase. J Clin Invest. 1977 Sep;60(3):665–674. doi: 10.1172/JCI108818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ulshen M. H., Grand R. J. Site of substrate stimulation of jejunal sucrase in the rat. J Clin Invest. 1979 Oct;64(4):1097–1102. doi: 10.1172/JCI109548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Yamada K., Bustmante S., Koldovský O. Dietary-induced rapid increase of rat jejunal sucrase and lactase activity in all regions of the villus. FEBS Lett. 1981 Jun 29;129(1):89–92. doi: 10.1016/0014-5793(81)80762-4. [DOI] [PubMed] [Google Scholar]
  25. Zhu J. S., Conklin K. A., Scheving L. A., Smith A. J., Gray G. M. Structural and functional correlates of sucrase-alpha-dextrinase in intact brush border membranes. Biochemistry. 1991 Oct 29;30(43):10399–10408. doi: 10.1021/bi00107a006. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES