Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Dec;90(6):2321–2326. doi: 10.1172/JCI116120

Adenosine triphosphate-dependent taurocholate transport in human liver plasma membranes.

H Wolters 1, F Kuipers 1, M J Slooff 1, R J Vonk 1
PMCID: PMC443385  PMID: 1469089

Abstract

Transport systems involved in uptake and biliary secretion of bile salts have been extensively studied in rat liver; however, little is known about these systems in the human liver. In this study, we investigated taurocholate (TC) transport in canalicular and basolateral plasma membrane vesicles isolated from 15 human livers (donor age 6-64 yr). ATP stimulated the uptake of TC into both canalicular and basolateral human liver plasma membrane vesicles (cLPM and blLPM, respectively). Considerable interindividual variations in the transport velocity were observed in the different membrane preparations used: 9.0 +/- 1.3 (mean +/- SEM, n = 17; range 1.6-18.0) and 9.3 +/- 2.0 (range 1.1-29.8) pmol TC.mg protein-1.min-1 at 1.0 microM TC for cLPM and blLPM, respectively. TC transport was temperature sensitive and showed saturation kinetics with a high affinity for TC (Km 4.2 +/- 0.7 microM and 3.7 +/- 0.5 microM for cLPM and blLPM, respectively). Transport was dependent on the ATP concentration and saturable (Km 0.25 +/- 0.03 mM, n = 3). Neither nitrate, which reduces membrane potential, nor the protonophore FCCP strongly inhibited ATP-dependent TC transport, indicating that membrane potential and proton gradient are not involved in this process. TC transport was significantly inhibited by the classical anion transport inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonate (250 microM) and the glutathione conjugate S-(2,4-dinitrophenyl)glutathione (100 microM). In conclusion, high affinity ATP-dependent TC transport is present in human liver at both the canalicular and the basolateral sides of the hepatocyte.

Full text

PDF
2321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi Y., Kobayashi H., Kurumi Y., Shouji M., Kitano M., Yamamoto T. ATP-dependent taurocholate transport by rat liver canalicular membrane vesicles. Hepatology. 1991 Oct;14(4 Pt 1):655–659. doi: 10.1016/0270-9139(91)90053-x. [DOI] [PubMed] [Google Scholar]
  2. Akerboom T. P., Narayanaswami V., Kunst M., Sies H. ATP-dependent S-(2,4-dinitrophenyl)glutathione transport in canalicular plasma membrane vesicles from rat liver. J Biol Chem. 1991 Jul 15;266(20):13147–13152. [PubMed] [Google Scholar]
  3. Bartles J. R., Feracci H. M., Stieger B., Hubbard A. L. Biogenesis of the rat hepatocyte plasma membrane in vivo: comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol. 1987 Sep;105(3):1241–1251. doi: 10.1083/jcb.105.3.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CORNELIUS C. E., ARIAS I. M., OSBURN B. I. HEPATIC PIGMENTATION WITH PHOTOSENSITIVITY: A SYNDROME IN CORRIEDALE SHEEP RESEMBLING DUBIN-JOHNSON SYNDROME IN MAN. J Am Vet Med Assoc. 1965 Apr 1;146:709–713. [PubMed] [Google Scholar]
  5. DUBIN I. N., JOHNSON F. B. Chronic idiopathic jaundice with unidentified pigment in liver cells; a new clinicopathologic entity with a report of 12 cases. Medicine (Baltimore) 1954 Sep;33(3):155–197. doi: 10.1097/00005792-195409000-00001. [DOI] [PubMed] [Google Scholar]
  6. Duffy M. C., Blitzer B. L., Boyer J. L. Direct determination of the driving forces for taurocholate uptake into rat liver plasma membrane vesicles. J Clin Invest. 1983 Oct;72(4):1470–1481. doi: 10.1172/JCI111103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fricker G., Landmann L., Meier P. J. Extrahepatic obstructive cholestasis reverses the bile salt secretory polarity of rat hepatocytes. J Clin Invest. 1989 Sep;84(3):876–885. doi: 10.1172/JCI114248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GOLDBARG J. A., RUTENBURG A. M. The colorimetric determination of leucine aminopeptidase in urine and serum of normal subjects and patients with cancer and other diseases. Cancer. 1958 Mar-Apr;11(2):283–291. doi: 10.1002/1097-0142(195803/04)11:2<283::aid-cncr2820110209>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
  9. Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver canalicular membrane vesicles. Evidence for the presence of an Na+-independent transport system. J Clin Invest. 1984 Mar;73(3):659–663. doi: 10.1172/JCI111257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Inoue M., Kinne R., Tran T., Arias I. M. Taurocholate transport by rat liver sinusoidal membrane vesicles: evidence of sodium cotransport. Hepatology. 1982 Sep-Oct;2(5):572–579. doi: 10.1002/hep.1840020510. [DOI] [PubMed] [Google Scholar]
  11. Ishikawa T., Müller M., Klünemann C., Schaub T., Keppler D. ATP-dependent primary active transport of cysteinyl leukotrienes across liver canalicular membrane. Role of the ATP-dependent transport system for glutathione S-conjugates. J Biol Chem. 1990 Nov 5;265(31):19279–19286. [PubMed] [Google Scholar]
  12. Jansen P. L., Peters W. H., Lamers W. H. Hereditary chronic conjugated hyperbilirubinemia in mutant rats caused by defective hepatic anion transport. Hepatology. 1985 Jul-Aug;5(4):573–579. doi: 10.1002/hep.1840050408. [DOI] [PubMed] [Google Scholar]
  13. Kalayoglu M., Sollinger H. W., Stratta R. J., D'Alessandro A. M., Hoffmann R. M., Pirsch J. D., Belzer F. O. Extended preservation of the liver for clinical transplantation. Lancet. 1988 Mar 19;1(8586):617–619. doi: 10.1016/s0140-6736(88)91416-x. [DOI] [PubMed] [Google Scholar]
  14. Kamimoto Y., Gatmaitan Z., Hsu J., Arias I. M. The function of Gp170, the multidrug resistance gene product, in rat liver canalicular membrane vesicles. J Biol Chem. 1989 Jul 15;264(20):11693–11698. [PubMed] [Google Scholar]
  15. Kitamura T., Jansen P., Hardenbrook C., Kamimoto Y., Gatmaitan Z., Arias I. M. Defective ATP-dependent bile canalicular transport of organic anions in mutant (TR-) rats with conjugated hyperbilirubinemia. Proc Natl Acad Sci U S A. 1990 May;87(9):3557–3561. doi: 10.1073/pnas.87.9.3557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kobayashi K., Komatsu S., Nishi T., Hara H., Hayashi K. ATP-dependent transport for glucuronides in canalicular plasma membrane vesicles. Biochem Biophys Res Commun. 1991 Apr 30;176(2):622–626. doi: 10.1016/s0006-291x(05)80229-3. [DOI] [PubMed] [Google Scholar]
  17. Kobayashi K., Sogame Y., Hara H., Hayashi K. Mechanism of glutathione S-conjugate transport in canalicular and basolateral rat liver plasma membranes. J Biol Chem. 1990 May 15;265(14):7737–7741. [PubMed] [Google Scholar]
  18. Kobayashi K., Sogame Y., Hayashi K., Nicotera P., Orrenius S. ATP stimulates the uptake of S-dinitrophenylglutathione by rat liver plasma membrane vesicles. FEBS Lett. 1988 Nov 21;240(1-2):55–58. doi: 10.1016/0014-5793(88)80339-9. [DOI] [PubMed] [Google Scholar]
  19. Kuipers F., Enserink M., Havinga R., van der Steen A. B., Hardonk M. J., Fevery J., Vonk R. J. Separate transport systems for biliary secretion of sulfated and unsulfated bile acids in the rat. J Clin Invest. 1988 May;81(5):1593–1599. doi: 10.1172/JCI113493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  21. Meier P. J., Meier-Abt A. S., Boyer J. L. Properties of the canalicular bile acid transport system in rat liver. Biochem J. 1987 Mar 1;242(2):465–469. doi: 10.1042/bj2420465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meier P. J., St Meier-Abt A., Barrett C., Boyer J. L. Mechanisms of taurocholate transport in canalicular and basolateral rat liver plasma membrane vesicles. Evidence for an electrogenic canalicular organic anion carrier. J Biol Chem. 1984 Aug 25;259(16):10614–10622. [PubMed] [Google Scholar]
  23. Meier P. J. Transport polarity of hepatocytes. Semin Liver Dis. 1988 Nov;8(4):293–307. doi: 10.1055/s-2008-1040551. [DOI] [PubMed] [Google Scholar]
  24. Müller M., Ishikawa T., Berger U., Klünemann C., Lucka L., Schreyer A., Kannicht C., Reutter W., Kurz G., Keppler D. ATP-dependent transport of taurocholate across the hepatocyte canalicular membrane mediated by a 110-kDa glycoprotein binding ATP and bile salt. J Biol Chem. 1991 Oct 5;266(28):18920–18926. [PubMed] [Google Scholar]
  25. Nishida T., Gatmaitan Z., Che M., Arias I. M. Rat liver canalicular membrane vesicles contain an ATP-dependent bile acid transport system. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6590–6594. doi: 10.1073/pnas.88.15.6590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Novak D. A., Ryckman F. C., Suchy F. J. Taurocholate transport by basolateral plasma membrane vesicles isolated from human liver. Hepatology. 1989 Oct;10(4):447–453. doi: 10.1002/hep.1840100408. [DOI] [PubMed] [Google Scholar]
  27. Ohta M., Kanai S., Sato Y., Kitani K. Age-dependent decrease in the hepatic uptake and biliary excretion of ouabain in rats. Biochem Pharmacol. 1988 Mar 1;37(5):935–942. doi: 10.1016/0006-2952(88)90184-0. [DOI] [PubMed] [Google Scholar]
  28. Ohta M., Kitani K. Age-dependent decrease in the hepatic uptake of taurocholic acid resembles that for ouabain. A possible role of surface membrane protein mobility. Biochem Pharmacol. 1990 Apr 1;39(7):1223–1228. doi: 10.1016/0006-2952(90)90266-n. [DOI] [PubMed] [Google Scholar]
  29. Oude Elferink R. P., Ottenhoff R., Liefting W. G., Schoemaker B., Groen A. K., Jansen P. L. ATP-dependent efflux of GSSG and GS-conjugate from isolated rat hepatocytes. Am J Physiol. 1990 May;258(5 Pt 1):G699–G706. doi: 10.1152/ajpgi.1990.258.5.G699. [DOI] [PubMed] [Google Scholar]
  30. Ruetz S., Fricker G., Hugentobler G., Winterhalter K., Kurz G., Meier P. J. Isolation and characterization of the putative canalicular bile salt transport system of rat liver. J Biol Chem. 1987 Aug 15;262(23):11324–11330. [PubMed] [Google Scholar]
  31. Ruetz S., Hugentobler G., Meier P. J. Functional reconstitution of the canalicular bile salt transport system of rat liver. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6147–6151. doi: 10.1073/pnas.85.16.6147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ruifrok P. G., Meijer D. K. Sodium ion-coupled uptake of taurocholate by rat-liver plasma membrane vesicles. Liver. 1982 Mar;2(1):28–34. doi: 10.1111/j.1600-0676.1982.tb00175.x. [DOI] [PubMed] [Google Scholar]
  33. Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
  34. Sippel C. J., Ananthanarayanan M., Suchy F. J. Isolation and characterization of the canalicular membrane bile acid transport protein of rat liver. Am J Physiol. 1990 May;258(5 Pt 1):G728–G737. doi: 10.1152/ajpgi.1990.258.5.G728. [DOI] [PubMed] [Google Scholar]
  35. Wolters H., Spiering M., Gerding A., Slooff M. J., Kuipers F., Hardonk M. J., Vonk R. J. Isolation and characterization of canalicular and basolateral plasma membrane fractions from human liver. Biochim Biophys Acta. 1991 Oct 14;1069(1):61–69. doi: 10.1016/0005-2736(91)90104-g. [DOI] [PubMed] [Google Scholar]
  36. Zimniak P., Ziller S. A., 3rd, Panfil I., Radominska A., Wolters H., Kuipers F., Sharma R., Saxena M., Moslen M. T., Vore M. Identification of an anion-transport ATPase that catalyzes glutathione conjugate-dependent ATP hydrolysis in canalicular plasma membranes from normal rats and rats with conjugated hyperbilirubinemia (GY mutant). Arch Biochem Biophys. 1992 Feb 1;292(2):534–538. doi: 10.1016/0003-9861(92)90027-t. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES