Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1992 Dec;90(6):2355–2361. doi: 10.1172/JCI116125

The HLA-DRB1 locus as a genetic component in giant cell arteritis. Mapping of a disease-linked sequence motif to the antigen binding site of the HLA-DR molecule.

C M Weyand 1, K C Hicok 1, G G Hunder 1, J J Goronzy 1
PMCID: PMC443390  PMID: 1469092

Abstract

Giant cell arteritis (GCA) is a granulomatous vasculitis affecting persons over 50 years of age. The inflammatory infiltrate, which is targeted at the aorta and its proximal branches, includes activated CD4+ helper T cells, histiocytes, and giant cells. To investigate whether the genetic polymorphism of the HLA-DRB1 genes contributes to the local accumulation of activated T cells, we have analyzed both HLA-DRB1 alleles in a cohort of 42 patients with biopsy-proven GCA. The majority of patients (60%) expressed the B1*0401 or B1*0404/8 variant of the HLA-DR4 haplotype, both of which also represent the major genetic factors underlying the disease association in RA. GCA patients negative for the disease-linked HLA-DR4 alleles were characterized by a nonrandom distribution of HLA-DRB1 alleles. Sequence comparison among the allelic products identified in the GCA cohort demonstrated heterogeneity for the sequence polymorphism of the third hypervariable region (HVR), but homology for the polymorphic residues within the HVR2 of the HLA-DRB1 gene. The GCA patients shared a sequence motif spanning amino acid positions 28-31 of the HLA-DR beta 1 chain. In the structural model for HLA-DR molecules, this sequence motif can be mapped to the antigen-binding site of the HLA complex, suggesting a crucial role of antigen selection and presentation in GCA. In contrast, the sequence polymorphism linked to RA has been mapped to the HVR3 of the HLA-DRB1 gene and translates into a distinct domain of the HLA-DR molecule, the alpha-helical loop surrounding the antigen-binding groove. A consecutive case series study demonstrated that GCA and RA rarely co-occurred, supporting the interpretation that distinct functional domains of the HLA-DR molecule are implicated in the pathomechanisms of these two autoimmune diseases.

Full text

PDF
2355

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnett F. C., Edworthy S. M., Bloch D. A., McShane D. J., Fries J. F., Cooper N. S., Healey L. A., Kaplan S. R., Liang M. H., Luthra H. S. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 1988 Mar;31(3):315–324. doi: 10.1002/art.1780310302. [DOI] [PubMed] [Google Scholar]
  2. Banks P. M., Cohen M. D., Ginsburg W. W., Hunder G. G. Immunohistologic and cytochemical studies of temporal arteritis. Arthritis Rheum. 1983 Oct;26(10):1201–1207. doi: 10.1002/art.1780261005. [DOI] [PubMed] [Google Scholar]
  3. Bignon J. D., Ferec C., Barrier J., Pennec Y., Verlingue C., Cheneau M. L., Lucas V., Muller J. Y., Saleun J. P. HLA class II genes polymorphism in DR4 giant cell arteritis patients. Tissue Antigens. 1988 Nov;32(5):254–258. doi: 10.1111/j.1399-0039.1988.tb01664.x. [DOI] [PubMed] [Google Scholar]
  4. Brown J. H., Jardetzky T., Saper M. A., Samraoui B., Bjorkman P. J., Wiley D. C. A hypothetical model of the foreign antigen binding site of class II histocompatibility molecules. Nature. 1988 Apr 28;332(6167):845–850. doi: 10.1038/332845a0. [DOI] [PubMed] [Google Scholar]
  5. Calamia K. T., Moore S. B., Elveback L. R., Hunder G. G. HLA-DR locus antigens in polymyalgia rheumatica and giant cell arteritis. J Rheumatol. 1981 Nov-Dec;8(6):993–996. [PubMed] [Google Scholar]
  6. Dasgupta B., Duke O., Timms A. M., Pitzalis C., Panayi G. S. Selective depletion and activation of CD8+ lymphocytes from peripheral blood of patients with polymyalgia rheumatica and giant cell arteritis. Ann Rheum Dis. 1989 Apr;48(4):307–311. doi: 10.1136/ard.48.4.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Friedman G., Friedman B., Benbassat J. Epidemiology of temporal arteritis in Israel. Isr J Med Sci. 1982 Feb;18(2):241–244. [PubMed] [Google Scholar]
  8. Ginsburg W. W., Cohen M. D., Hall S. B., Vollertsen R. S., Hunder G. G. Seronegative polyarthritis in giant cell arteritis. Arthritis Rheum. 1985 Dec;28(12):1362–1366. doi: 10.1002/art.1780281208. [DOI] [PubMed] [Google Scholar]
  9. Goronzy J., Weyand C. M., Fathman C. G. Shared T cell recognition sites on human histocompatibility leukocyte antigen class II molecules of patients with seropositive rheumatoid arthritis. J Clin Invest. 1986 Mar;77(3):1042–1049. doi: 10.1172/JCI112358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gregersen P. K., Silver J., Winchester R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987 Nov;30(11):1205–1213. doi: 10.1002/art.1780301102. [DOI] [PubMed] [Google Scholar]
  11. Hall S., Ginsburg W. W., Vollertsen R. S., Hunder G. G. The coexistence of rheumatoid arthritis and giant cell arteritis. J Rheumatol. 1983 Dec;10(6):995–997. [PubMed] [Google Scholar]
  12. Huston K. A., Hunder G. G., Lie J. T., Kennedy R. H., Elveback L. R. Temporal arteritis: a 25-year epidemiologic, clinical, and pathologic study. Ann Intern Med. 1978 Feb;88(2):162–167. doi: 10.7326/0003-4819-88-2-162. [DOI] [PubMed] [Google Scholar]
  13. Lie J. T. Illustrated histopathologic classification criteria for selected vasculitis syndromes. American College of Rheumatology Subcommittee on Classification of Vasculitis. Arthritis Rheum. 1990 Aug;33(8):1074–1087. doi: 10.1002/art.1780330804. [DOI] [PubMed] [Google Scholar]
  14. Linos A., Worthington J. W., O'Fallon W. M., Kurland L. T. The epidemiology of rheumatoid arthritis in Rochester, Minnesota: a study of incidence, prevalence, and mortality. Am J Epidemiol. 1980 Jan;111(1):87–98. doi: 10.1093/oxfordjournals.aje.a112878. [DOI] [PubMed] [Google Scholar]
  15. Lowenstein M. B., Bridgeford P. H., Vasey F. B., Germain B. F., Espinoza L. R. Increased frequency of HLA-DR3 and DR4 in polymyalgia rheumatica-giant cell arteritis. Arthritis Rheum. 1983 Jul;26(7):925–927. doi: 10.1002/art.1780260717. [DOI] [PubMed] [Google Scholar]
  16. Machado E. B., Michet C. J., Ballard D. J., Hunder G. G., Beard C. M., Chu C. P., O'Fallon W. M. Trends in incidence and clinical presentation of temporal arteritis in Olmsted County, Minnesota, 1950-1985. Arthritis Rheum. 1988 Jun;31(6):745–749. doi: 10.1002/art.1780310607. [DOI] [PubMed] [Google Scholar]
  17. Marsh S. G., Bodmer J. G. HLA class II nucleotide sequences, 1991. Immunogenetics. 1991;33(5-6):321–334. doi: 10.1007/BF00216691. [DOI] [PubMed] [Google Scholar]
  18. Nepom G. T., Hansen J. A., Nepom B. S. The molecular basis for HLA class II associations with rheumatoid arthritis. J Clin Immunol. 1987 Jan;7(1):1–7. doi: 10.1007/BF00915418. [DOI] [PubMed] [Google Scholar]
  19. Nepom G. T., Seyfried C. E., Holbeck S. L., Wilske K. R., Nepom B. S. Identification of HLA-Dw14 genes in DR4+ rheumatoid arthritis. Lancet. 1986 Nov 1;2(8514):1002–1005. doi: 10.1016/s0140-6736(86)92614-0. [DOI] [PubMed] [Google Scholar]
  20. Richardson J. E., Gladman D. D., Fam A., Keystone E. C. HLA-DR4 in giant cell arteritis: association with polymyalgia rheumatica syndrome. Arthritis Rheum. 1987 Nov;30(11):1293–1297. doi: 10.1002/art.1780301113. [DOI] [PubMed] [Google Scholar]
  21. Salvarani C., Macchioni P. L., Tartoni P. L., Rossi F., Baricchi R., Castri C., Chiaravalloti F., Portioli I. Polymyalgia rheumatica and giant cell arteritis: a 5-year epidemiologic and clinical study in Reggio Emilia, Italy. Clin Exp Rheumatol. 1987 Jul-Sep;5(3):205–215. [PubMed] [Google Scholar]
  22. Salvarani C., Macchioni P., Zizzi F., Mantovani W., Rossi F., Castri C., Capozzoli N., Baricchi R., Boiardi L., Chiaravalloti F. Epidemiologic and immunogenetic aspects of polymyalgia rheumatica and giant cell arteritis in northern Italy. Arthritis Rheum. 1991 Mar;34(3):351–356. doi: 10.1002/art.1780340313. [DOI] [PubMed] [Google Scholar]
  23. Schiff B., Mizrachi Y., Orgad S., Yaron M., Gazit E. Association of HLA-Aw31 and HLA-DR1 with adult rheumatoid arthritis. Ann Rheum Dis. 1982 Aug;41(4):403–404. doi: 10.1136/ard.41.4.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Schwartz R. H. Immune response (Ir) genes of the murine major histocompatibility complex. Adv Immunol. 1986;38:31–201. doi: 10.1016/s0065-2776(08)60006-1. [DOI] [PubMed] [Google Scholar]
  25. Stastny P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N Engl J Med. 1978 Apr 20;298(16):869–871. doi: 10.1056/NEJM197804202981602. [DOI] [PubMed] [Google Scholar]
  26. Tan E. M., Cohen A. S., Fries J. F., Masi A. T., McShane D. J., Rothfield N. F., Schaller J. G., Talal N., Winchester R. J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1982 Nov;25(11):1271–1277. doi: 10.1002/art.1780251101. [DOI] [PubMed] [Google Scholar]
  27. Weyand C. M., Hicok K. C., Goronzy J. J. Nonrandom selection of T cell specificities in anti-HLA-DR responses. Sequence motifs of the responder HLA-DR allele influence T cell recruitment. J Immunol. 1991 Jul 1;147(1):70–78. [PubMed] [Google Scholar]
  28. Weyand C. M., Xie C., Goronzy J. J. Homozygosity for the HLA-DRB1 allele selects for extraarticular manifestations in rheumatoid arthritis. J Clin Invest. 1992 Jun;89(6):2033–2039. doi: 10.1172/JCI115814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Willkens R. F., Nepom G. T., Marks C. R., Nettles J. W., Nepom B. S. Association of HLA-Dw16 with rheumatoid arthritis in Yakima Indians. Further evidence for the "shared epitope" hypothesis. Arthritis Rheum. 1991 Jan;34(1):43–47. doi: 10.1002/art.1780340107. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES