Abstract
Respiratory insufficiency patients who need only partial ventilatory support are, nevertheless, intubated and connected to a respirator. In search of a partial respiratory assistance method we evaluated the gas exchange, mechanisms, and hemodynamic effects of intratracheal insufflation (ITI) via a narrow (0.2-cm) catheter. The effects of flow rate (0.05-0.2 liter/min per kg), catheter tip position (carina, bronchus, and trachea), and superimposed chest vibration at 22 Hz were studied in seven anesthetized and partially paralyzed dogs. ITI in the carina induced CO2 removal (VCO2) of 48 +/- 16 ml/min in the periods between breaths, which was 39% of the control VCO2. CO2 removal rates between breaths with ITI in a bronchus and in the trachea were 63 and 28% of control, respectively (P < 0.05). ITI at 0.15-0.2 liter/min per kg augmented total VCO2 by > 50% over control (P < 0.05) and decreased PaCO2 by 10% (P < 0.05) despite a 28% fall in VE and 32% lower work of breathing (P < 0.05). Adding vibration to ITI at 0.15 liter/min per kg induced VCO2 of 162 +/- 34 ml/min, which was significantly greater than control, while PaCO2 fell from 69 +/- 24 to 47 +/- 6 mmHg (P < 0.05), despite complete cessation of spontaneous breathing. ITI with or without vibration did not cause any hemodynamic changes, except for a fall in the shunt fraction from 14.6 +/- 9.9% to 5.8 +/- 2.8% with vibration. Thus, ITI at low flow rates can support respiration with no hemodynamic side effects. Adding chest vibration further enhances gas exchange and can provide total ventilation.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALDERSON A. M., MACLAGAN J. THE ACTION OF DECAMETHONIUM AND TUBOCURARINE ON THE RESPIRATORY AND LIMB MUSCLES OF THE CAT. J Physiol. 1964 Sep;173:38–56. doi: 10.1113/jphysiol.1964.sp007441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bergofsky E. H., Hurewitz A. N. Airway insufflation: physiologic effects on acute and chronic gas exchange in humans. Am Rev Respir Dis. 1989 Oct;140(4):885–890. doi: 10.1164/ajrccm/140.4.885. [DOI] [PubMed] [Google Scholar]
- Bitterman H., Kerem D. H., Shabtai Y., Gavriely N., Palti Y. Respiration maintained by externally applied vibration and tracheal insufflation in the cat. Anesth Analg. 1983 Jan;62(1):33–38. [PubMed] [Google Scholar]
- Burwen D. R., Watson J., Brown R., Josa M., Slutsky A. S. Effect of cardiogenic oscillations on gas mixing during tracheal insufflation of oxygen. J Appl Physiol (1985) 1986 Mar;60(3):965–971. doi: 10.1152/jappl.1986.60.3.965. [DOI] [PubMed] [Google Scholar]
- Carlon G. C., Miodownik S., Ray C., Jr, Kahn R. C. Technical aspects and clinical implications of high frequency jet ventilation with a solenoid valve. Crit Care Med. 1981 Jan;9(1):47–50. doi: 10.1097/00003246-198101000-00011. [DOI] [PubMed] [Google Scholar]
- Chang H. K. Mechanisms of gas transport during ventilation by high-frequency oscillation. J Appl Physiol Respir Environ Exerc Physiol. 1984 Mar;56(3):553–563. doi: 10.1152/jappl.1984.56.3.553. [DOI] [PubMed] [Google Scholar]
- Couser J. I., Jr, Make B. J. Transtracheal oxygen decreases inspired minute ventilation. Am Rev Respir Dis. 1989 Mar;139(3):627–631. doi: 10.1164/ajrccm/139.3.627. [DOI] [PubMed] [Google Scholar]
- Drinker P., Shaw L. A. AN APPARATUS FOR THE PROLONGED ADMINISTRATION OF ARTIFICIAL RESPIRATION: I. A Design for Adults and Children. J Clin Invest. 1929 Jun;7(2):229–247. doi: 10.1172/JCI100226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engel L. A., Macklem P. T. Gas mixing and distribution in the lung. Int Rev Physiol. 1977;14:37–82. [PubMed] [Google Scholar]
- Gavriely N., Shabtai Y. Effect of tracheal bias flow on gas exchange during high-frequency chest percussion. J Appl Physiol (1985) 1987 Jul;63(1):302–308. doi: 10.1152/jappl.1987.63.1.302. [DOI] [PubMed] [Google Scholar]
- Hayek Z., Peliowski A., Ryan C. A., Jones R., Finer N. N. External high frequency oscillation in cats. Experience in the normal lung and after saline lung lavage. Am Rev Respir Dis. 1986 Apr;133(4):630–634. doi: 10.1164/arrd.1986.133.4.630. [DOI] [PubMed] [Google Scholar]
- Lehnert B. E., Oberdörster G., Slutsky A. S. Constant-flow ventilation of apneic dogs. J Appl Physiol Respir Environ Exerc Physiol. 1982 Aug;53(2):483–489. doi: 10.1152/jappl.1982.53.2.483. [DOI] [PubMed] [Google Scholar]
- Nahum A., Sznajder J. I., Solway J., Wood L. D., Schumacker P. T. Pressure, flow, and density relationships in airway models during constant-flow ventilation. J Appl Physiol (1985) 1988 May;64(5):2066–2073. doi: 10.1152/jappl.1988.64.5.2066. [DOI] [PubMed] [Google Scholar]
- PLUM F., WHEDON G. D. The rapidrocking bed: its effect on the ventilation of poliomyelitis patients with respiratory paralysis. N Engl J Med. 1951 Aug 16;245(7):235–241. doi: 10.1056/NEJM195108162450701. [DOI] [PubMed] [Google Scholar]
- Piper P., Vane J. The release of prostaglandins from lung and other tissues. Ann N Y Acad Sci. 1971 Apr 30;180:363–385. doi: 10.1111/j.1749-6632.1971.tb53205.x. [DOI] [PubMed] [Google Scholar]
- REED J. P., KEMPH J. P., HAMELBERG W., HITCHCOCK F. A., JACOBY J. Studies with transtracheal artificial respiration. Anesthesiology. 1954 Jan;15(1):28–41. doi: 10.1097/00000542-195401000-00006. [DOI] [PubMed] [Google Scholar]
- Shabtai Y., Gavriely N. Frequency and amplitude effects during high-frequency vibration ventilation in dogs. J Appl Physiol (1985) 1989 Mar;66(3):1127–1135. doi: 10.1152/jappl.1989.66.3.1127. [DOI] [PubMed] [Google Scholar]
- Slutsky A. S., Menon A. S. Catheter position and blood gases during constant-flow ventilation. J Appl Physiol (1985) 1987 Feb;62(2):513–519. doi: 10.1152/jappl.1987.62.2.513. [DOI] [PubMed] [Google Scholar]
- Slutsky A. S., Watson J., Leith D. E., Brown R. Tracheal insufflation of O2 (TRIO) at low flow rates sustains life for several hours. Anesthesiology. 1985 Sep;63(3):278–286. doi: 10.1097/00000542-198509000-00007. [DOI] [PubMed] [Google Scholar]
- Vettermann J., Brusasco V., Rehder K. Gas exchange and intrapulmonary distribution of ventilation during continuous-flow ventilation. J Appl Physiol (1985) 1988 May;64(5):1864–1869. doi: 10.1152/jappl.1988.64.5.1864. [DOI] [PubMed] [Google Scholar]
- Villar J., Winston B., Slutsky A. S. Non-conventional techniques of ventilatory support. Crit Care Clin. 1990 Jul;6(3):579–603. [PubMed] [Google Scholar]





