Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 7;71(Pt 4):o227–o228. doi: 10.1107/S2056989015004387

Crystal structure of 4-azido­methyl-6-isopropyl-2H-chromen-2-one

M S Krishnamurthy a, Noor Shahina Begum a,*, D Shamala a, K Shivashankar a
PMCID: PMC4438796  PMID: 26029427

Abstract

In the title mol­ecule, C13H13N3O2, the benzo­pyran ring system is essentially planar, with a maximum deviation of 0.017 (1) Å. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules into ladders along [010]. In addition, π–π inter­actions between inversion-related mol­ecules, with centroid–centroid distances in the range 3.679 (2)–3.876 (2) Å, complete a two-dimensional network parallel to (001).

Keywords: crystal structure, 2H-chromen-2-one, π–π inter­actions, hydrogen bonding

Related literature  

For therapeutic properties of coumarin derivatives, see: Lacy & O’Kennedy (2004); Mustafa et al. (2011). For the biological activity of 2H-chromen-2-ones, see: Naik et al. (2012). For applications of organic azides, see: Kusanur et al. (2010). For structural features of coumarins, see: Moorthy et al. (2003). For related structures, see: Gowda et al. (2010); Fun et al. (2011); Nagarajaiah et al. (2013).graphic file with name e-71-0o227-scheme1.jpg

Experimental  

Crystal data  

  • C13H13N3O2

  • M r = 243.26

  • Triclinic, Inline graphic

  • a = 6.895 (2) Å

  • b = 7.862 (2) Å

  • c = 11.592 (4) Å

  • α = 72.218 (6)°

  • β = 79.662 (5)°

  • γ = 82.430 (6)°

  • V = 586.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

Data collection  

  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.983, T max = 0.985

  • 3059 measured reflections

  • 2026 independent reflections

  • 1644 reflections with I > 2σ(I)

  • R int = 0.013

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.150

  • S = 1.07

  • 2026 reflections

  • 165 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015004387/lh5754sup1.cif

e-71-0o227-sup1.cif (141KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004387/lh5754Isup2.hkl

e-71-0o227-Isup2.hkl (111.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004387/lh5754Isup3.cml

. DOI: 10.1107/S2056989015004387/lh5754fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015004387/lh5754fig2.tif

Part of the crystal structure with weak hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

CCDC reference: 1051846

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C5H5O2i 0.95 2.56 3.498(2) 168
C13H13CO2ii 0.98 2.55 3.524(3) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MSK thanks the UGC for a UGC–BSR meritorious fellowship. KSS and DS are thankful to the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance [grant No. 02 (0172)/13/EMR-II].

supplementary crystallographic information

S1. Comment

Coumarins are of great interest due to their biological properties (Lacy & Kennedy 2004). In particular, their physiological, bacteriostatic and anti- tumour activity (Mustafa et al., 2011) makes these compounds attractive for further backbone derivatization and screening for their therapeutic properties. In view of their extensive natural occurrence and biocompatibility, 2H-chromen-2-ones have been found to exhibit variety of biological activities (Naik et al., 2012). In addition, organic azides are an important class of 1,3-dipoles, which have been recently recognized as crucial functional groups in click chemistry (Kusanur et al., 2010). In view of the above, the title compound was isolated and the crystal structure is presented herein.

In the title compound (Fig. 1), the benzopyran ring system is essentially planar with a maximum deviation of 0.017 (1)Å for atom C10. Atom N1 of the azido group deviates by 0.168 (2)Å from the mean-plane of the benzopyran ring system while atoms N2 and N3, deviate by -0.489 (1) and -1.013 (2)Å, respectively from the opposite face of this ring system. In the crystal, weak C—H···O hydrogen bonds link molecules into ladders along [010] (Table 1, Fig.2). In addition, π–π interactions between inversion related molecules, with centroid–centroid distances in the range 3.679 (2)–3.876 (2)Å, complete a two-dimensional network parallel to (001).

S2. Experimental

4-Bromomethyl-6-isopropylcoumarin (0.01 mol) was taken in acetone (20 ml) in a round bottomed flask. To this, sodium azide (0.012 mol, 0.78 g) in 5 ml of water was added drop wise with stirring for 3 hrs (reaction was monitored by TLC). The reaction mixture was poured into ice cold water, separated solid was filtered and recrystallized from ethyl acetate. (Yield 85%; colorless solid; mp 360 K).

S3. Refinement

H atoms were placed in calculated positions in a riding-model approximation with C—H = 0.95, 0.98 and 0.99Å for aromatic, methyl and methylene H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure with weak hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

Crystal data

C13H13N3O2 Z = 2
Mr = 243.26 F(000) = 256
Triclinic, P1 Dx = 1.377 Mg m3
a = 6.895 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.862 (2) Å Cell parameters from 2028 reflections
c = 11.592 (4) Å θ = 1.9–25.0°
α = 72.218 (6)° µ = 0.10 mm1
β = 79.662 (5)° T = 100 K
γ = 82.430 (6)° Block, colourless
V = 586.7 (3) Å3 0.18 × 0.16 × 0.16 mm

Data collection

Bruker SMART APEX CCD detector diffractometer 1644 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.013
ω scans θmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −8→7
Tmin = 0.983, Tmax = 0.985 k = −9→8
3059 measured reflections l = −13→9
2026 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0929P)2 + 0.0624P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
2026 reflections Δρmax = 0.34 e Å3
165 parameters Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21989 (18) 0.72869 (15) 0.55787 (11) 0.0218 (4)
O2 0.25015 (19) 0.97173 (16) 0.40014 (12) 0.0275 (4)
N1 0.3566 (3) 0.5078 (2) 0.18653 (14) 0.0295 (4)
N2 0.2838 (2) 0.46732 (19) 0.11032 (14) 0.0224 (4)
N3 0.2296 (3) 0.4459 (2) 0.02953 (15) 0.0347 (5)
C1 0.3110 (3) 0.3983 (2) 0.31451 (15) 0.0208 (4)
H1A 0.4222 0.3069 0.3361 0.025*
H1B 0.1911 0.3354 0.3245 0.025*
C2 0.2481 (3) 0.8106 (2) 0.43304 (16) 0.0215 (4)
C3 0.2742 (3) 0.6957 (2) 0.35451 (16) 0.0206 (4)
H3 0.2898 0.7488 0.2683 0.025*
C4 0.2773 (2) 0.5161 (2) 0.39858 (16) 0.0185 (4)
C5 0.2560 (2) 0.2462 (2) 0.58662 (16) 0.0190 (4)
H5 0.2745 0.1667 0.5374 0.023*
C6 0.2339 (3) 0.1765 (2) 0.71344 (16) 0.0197 (4)
C7 0.2029 (3) 0.2955 (2) 0.78447 (17) 0.0223 (4)
H7 0.1848 0.2496 0.8712 0.027*
C8 0.1980 (3) 0.4781 (2) 0.73103 (16) 0.0212 (4)
H8 0.1781 0.5576 0.7803 0.025*
C9 0.2226 (2) 0.5440 (2) 0.60513 (16) 0.0190 (4)
C10 0.2516 (2) 0.4322 (2) 0.52983 (16) 0.0175 (4)
C11 0.2405 (3) −0.0239 (2) 0.77465 (16) 0.0231 (5)
H11 0.2825 −0.0853 0.7093 0.028*
C12 0.3913 (3) −0.0852 (2) 0.86437 (18) 0.0292 (5)
H12A 0.5230 −0.0542 0.8205 0.044*
H12B 0.3927 −0.2152 0.9012 0.044*
H12C 0.3546 −0.0253 0.9289 0.044*
C13 0.0355 (3) −0.0808 (2) 0.83985 (18) 0.0286 (5)
H13A −0.0161 −0.0113 0.8976 0.043*
H13B 0.0457 −0.2087 0.8844 0.043*
H13C −0.0542 −0.0588 0.7792 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0290 (7) 0.0150 (7) 0.0213 (7) −0.0018 (5) −0.0036 (6) −0.0053 (5)
O2 0.0367 (8) 0.0165 (7) 0.0283 (8) −0.0043 (6) −0.0056 (6) −0.0040 (6)
N1 0.0438 (10) 0.0293 (9) 0.0185 (9) −0.0163 (8) −0.0034 (7) −0.0065 (7)
N2 0.0261 (9) 0.0182 (8) 0.0198 (8) −0.0039 (6) −0.0012 (7) −0.0014 (6)
N3 0.0430 (11) 0.0413 (11) 0.0214 (9) −0.0155 (8) −0.0077 (8) −0.0046 (8)
C1 0.0241 (9) 0.0201 (9) 0.0164 (9) −0.0060 (7) −0.0017 (7) −0.0017 (7)
C2 0.0219 (9) 0.0200 (10) 0.0217 (10) −0.0025 (7) −0.0040 (7) −0.0038 (8)
C3 0.0210 (9) 0.0211 (9) 0.0187 (9) −0.0045 (7) −0.0032 (7) −0.0031 (8)
C4 0.0142 (8) 0.0213 (9) 0.0200 (9) −0.0023 (7) −0.0033 (7) −0.0051 (7)
C5 0.0184 (9) 0.0196 (9) 0.0200 (9) −0.0016 (7) −0.0027 (7) −0.0075 (8)
C6 0.0203 (9) 0.0180 (9) 0.0205 (9) −0.0031 (7) −0.0032 (7) −0.0044 (7)
C7 0.0238 (9) 0.0243 (10) 0.0181 (9) −0.0041 (7) −0.0030 (7) −0.0042 (8)
C8 0.0235 (9) 0.0208 (9) 0.0218 (10) −0.0008 (7) −0.0026 (8) −0.0105 (8)
C9 0.0185 (9) 0.0151 (9) 0.0227 (10) −0.0011 (7) −0.0037 (7) −0.0040 (7)
C10 0.0148 (8) 0.0191 (9) 0.0192 (9) −0.0025 (7) −0.0028 (7) −0.0057 (7)
C11 0.0298 (10) 0.0193 (9) 0.0189 (10) −0.0029 (8) −0.0013 (8) −0.0046 (7)
C12 0.0289 (10) 0.0215 (10) 0.0317 (11) −0.0016 (8) −0.0049 (9) 0.0004 (8)
C13 0.0334 (11) 0.0213 (10) 0.0305 (11) −0.0061 (8) −0.0070 (9) −0.0036 (8)

Geometric parameters (Å, º)

O1—C2 1.382 (2) C6—C7 1.398 (3)
O1—C9 1.386 (2) C6—C11 1.515 (2)
O2—C2 1.207 (2) C7—C8 1.378 (2)
N1—N2 1.228 (2) C7—H7 0.9500
N1—C1 1.471 (2) C8—C9 1.378 (3)
N2—N3 1.133 (2) C8—H8 0.9500
C1—C4 1.508 (2) C9—C10 1.391 (3)
C1—H1A 0.9900 C11—C12 1.531 (3)
C1—H1B 0.9900 C11—C13 1.532 (3)
C2—C3 1.442 (3) C11—H11 1.0000
C3—C4 1.346 (2) C12—H12A 0.9800
C3—H3 0.9500 C12—H12B 0.9800
C4—C10 1.450 (2) C12—H12C 0.9800
C5—C6 1.391 (2) C13—H13A 0.9800
C5—C10 1.407 (2) C13—H13B 0.9800
C5—H5 0.9500 C13—H13C 0.9800
C2—O1—C9 121.36 (14) C7—C8—C9 119.10 (17)
N2—N1—C1 116.42 (14) C7—C8—H8 120.5
N3—N2—N1 171.49 (17) C9—C8—H8 120.5
N1—C1—C4 109.91 (14) C8—C9—O1 115.88 (16)
N1—C1—H1A 109.7 C8—C9—C10 122.21 (16)
C4—C1—H1A 109.7 O1—C9—C10 121.90 (16)
N1—C1—H1B 109.7 C9—C10—C5 117.60 (16)
C4—C1—H1B 109.7 C9—C10—C4 117.48 (15)
H1A—C1—H1B 108.2 C5—C10—C4 124.92 (16)
O2—C2—O1 116.82 (16) C6—C11—C12 111.82 (15)
O2—C2—C3 126.20 (17) C6—C11—C13 111.03 (15)
O1—C2—C3 116.98 (15) C12—C11—C13 110.35 (15)
C4—C3—C2 122.54 (17) C6—C11—H11 107.8
C4—C3—H3 118.7 C12—C11—H11 107.8
C2—C3—H3 118.7 C13—C11—H11 107.8
C3—C4—C10 119.70 (16) C11—C12—H12A 109.5
C3—C4—C1 121.56 (16) C11—C12—H12B 109.5
C10—C4—C1 118.72 (15) H12A—C12—H12B 109.5
C6—C5—C10 121.25 (16) C11—C12—H12C 109.5
C6—C5—H5 119.4 H12A—C12—H12C 109.5
C10—C5—H5 119.4 H12B—C12—H12C 109.5
C5—C6—C7 118.58 (16) C11—C13—H13A 109.5
C5—C6—C11 121.29 (16) C11—C13—H13B 109.5
C7—C6—C11 120.13 (16) H13A—C13—H13B 109.5
C8—C7—C6 121.25 (17) C11—C13—H13C 109.5
C8—C7—H7 119.4 H13A—C13—H13C 109.5
C6—C7—H7 119.4 H13B—C13—H13C 109.5
N2—N1—C1—C4 −140.65 (17) C2—O1—C9—C8 178.30 (14)
C9—O1—C2—O2 −177.52 (15) C2—O1—C9—C10 −0.6 (2)
C9—O1—C2—C3 1.9 (2) C8—C9—C10—C5 −0.2 (3)
O2—C2—C3—C4 177.40 (17) O1—C9—C10—C5 178.68 (14)
O1—C2—C3—C4 −1.9 (3) C8—C9—C10—C4 −179.50 (15)
C2—C3—C4—C10 0.7 (3) O1—C9—C10—C4 −0.6 (2)
C2—C3—C4—C1 −178.12 (15) C6—C5—C10—C9 −0.5 (3)
N1—C1—C4—C3 5.5 (2) C6—C5—C10—C4 178.70 (15)
N1—C1—C4—C10 −173.34 (14) C3—C4—C10—C9 0.6 (2)
C10—C5—C6—C7 1.3 (3) C1—C4—C10—C9 179.43 (15)
C10—C5—C6—C11 −179.43 (15) C3—C4—C10—C5 −178.67 (16)
C5—C6—C7—C8 −1.3 (3) C1—C4—C10—C5 0.2 (2)
C11—C6—C7—C8 179.40 (15) C5—C6—C11—C12 126.86 (18)
C6—C7—C8—C9 0.6 (3) C7—C6—C11—C12 −53.9 (2)
C7—C8—C9—O1 −178.76 (14) C5—C6—C11—C13 −109.42 (19)
C7—C8—C9—C10 0.2 (3) C7—C6—C11—C13 69.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.56 3.498 (2) 168
C13—H13C···O2ii 0.98 2.55 3.524 (3) 172

Symmetry codes: (i) x, y−1, z; (ii) −x, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5754).

References

  1. Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Fun, H.-K., Goh, J. H., Wu, D. & Zhang, Y. (2011). Acta Cryst. E67, o136. [DOI] [PMC free article] [PubMed]
  4. Gowda, R., Basanagouda, M., Kulkarni, M. V. & Gowda, K. V. A. (2010). Acta Cryst. E66, o2906. [DOI] [PMC free article] [PubMed]
  5. Kusanur, R. A., Kulkarni, M. V., Kulkarni, G. M., Nayak, S. K., Guru Row, T. N., Ganesan, K. & Sun, C. M. (2010). J. Heterocycl. Chem. 47, 91–97.
  6. Lacy, A. & O’Kennedy, R. (2004). Curr. Pharm. Des. 10, 3797–3811. [DOI] [PubMed]
  7. Moorthy, J. N., Venkatakrishnan, P. & Singh, A. S. (2003). CrystEngComm, 5, 507–513.
  8. Mustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). Molecules, 16, 4305–4317. [DOI] [PMC free article] [PubMed]
  9. Nagarajaiah, H., Puttaraju, K. B., Shivashankar, K. & Begum, N. S. (2013). Acta Cryst. E69, o1056. [DOI] [PMC free article] [PubMed]
  10. Naik, R. J., Kulkarni, M. V., Pai, K. S. R. & Nayak, P. G. (2012). Chem. Biol. Drug Des. 80, 516–523. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015004387/lh5754sup1.cif

e-71-0o227-sup1.cif (141KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004387/lh5754Isup2.hkl

e-71-0o227-Isup2.hkl (111.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004387/lh5754Isup3.cml

. DOI: 10.1107/S2056989015004387/lh5754fig1.tif

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

. DOI: 10.1107/S2056989015004387/lh5754fig2.tif

Part of the crystal structure with weak hydrogen bonds shown as dashed lines. Only H atoms involved in hydrogen bonds are shown.

CCDC reference: 1051846

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES