Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 14;71(Pt 4):o238–o239. doi: 10.1107/S2056989015004715

Crystal structure of (5′S,8′S)-3-(2,5-di­methyl­phen­yl)-8-meth­oxy-3-nitro-1-aza­spiro­[4.5]decane-2,4-dione

Gao-Bo Hu a, Da-Wei Jiang a, Jiang-Yan Li a, Yan Rao a, Li-Yuan Jiang a,*
PMCID: PMC4438798  PMID: 26029433

Abstract

The title compound, C18H22N2O5, was synthesized by nitrification of its enol precursor. The pyrrolidine ring plane adopts a twisted conformation about the C—C bond linking the spiro centre and the C=O group remote from the N atom. It makes dihedral angles of 71.69 (9) and 88.92 (9)°, respectively, with the benzene ring plane and the plane defined by the four C atoms that form the seat of the of the cyclo­hexane chair. At the spiro centre, the NH group is axial and the C=O group is equatorial with respect to the cyclo­hexane ring. In the crystal, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R 2 2(8) loops. The dimers are linked by C—H⋯O inter­actions, generating a three-dimensional network.

Keywords: crystal structure; 1-aza­spiro­[4.5]decane-2,4-dione; hydrogen bonding; pesticide; spiro­tetra­mat

Related literature  

For the pesticide spiro­tetra­mat, the central unit of the title compound, see: Fischer & Weiss (2008); Maus (2008); Bruck et al. (2009); Campbell et al. (1985); Schobert & Schlenk (2008). For structures of spiro­tetra­mat derivatives, see: Fischer et al. (2010).graphic file with name e-71-0o238-scheme1.jpg

Experimental  

Crystal data  

  • C18H22N2O5

  • M r = 346.38

  • Monoclinic, Inline graphic

  • a = 9.5707 (9) Å

  • b = 8.4181 (7) Å

  • c = 22.8720 (19) Å

  • β = 100.703 (8)°

  • V = 1810.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 170 K

  • 0.36 × 0.32 × 0.23 mm

Data collection  

  • Agilent Xcalibur (Atlas, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.954, T max = 1.000

  • 6891 measured reflections

  • 3308 independent reflections

  • 2600 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.139

  • S = 1.04

  • 3308 reflections

  • 229 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015004715/hb7342sup1.cif

e-71-0o238-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004715/hb7342Isup2.hkl

e-71-0o238-Isup2.hkl (162.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004715/hb7342Isup3.cml

. DOI: 10.1107/S2056989015004715/hb7342fig1.tif

The mol­ecular structure of title mol­ecule, showing 50% displacement ellipsoids.

. DOI: 10.1107/S2056989015004715/hb7342fig2.tif

Reaction scheme.

CCDC reference: 1052631

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H2O3i 0.88 2.02 2.8853(19) 167
C4H4O5ii 0.95 2.57 3.287(3) 132
C7H7BO1iii 0.98 2.49 3.454(3) 168
C14H14BO2iv 0.99 2.54 3.265(3) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

S1. Comment

Spirotetramat is a new systemic insecticide which chemically belongs to the class of spirocyclic tetramic acid derivatives and be developed by Bayer CropScience AG (Fischer et al., 2008; Maus, 2008). A unique mode of action coupled with a high degree of activity on targeted pests and low toxicity to nontarget organisms make spirocyclic tetronic acid compounds as a new tool for integrated pest management (Bruck et al., 2009; Campbell et al.,1985; Schobert et al., 2008) In order to study the influence of new substituents on the activity of the Spirotetramat derivative, the title compound, has been synthesized and its structure has been determined (Fig. 1). The molecule contains one benzene ring, one six membered ring, and one five membered ring. The cyclohexane ring adopts a chair conformation;the C13, C14, C16 and C17 atoms are on one plane with C15 and C11 deviating by 0.658 (5)and -0.676 (9) Å, respectively. There are three planes in the molecule: atoms of C10, C11, C12 and N2 generate the pyrrolidine plane (I), C1—C6 yield the benzene plane (II) and C13—C14 and C16—C17 form the cyclohexane plane(III). The angle between planes I and II is 71.69 (9) °, and that between planes I and III is 88.92 (9) °. The space arrangement might result from the space factor between groups.

S2. Experimental

A solution of fuming nitric acid (0.92 g, 16mmoL) in anhydrous chloroform (10 ml) was added dropwise to a solution of compound 2 (1.78 g, 5.9mmoL) in anhydrous chloroform (20 ml) at 0 degree and stirred for 2 h. The reaction mixture was then washed with ice water (15 ml), and saturated sodium chloride solution and dried over anhydrous Na2SO4. The solvent was evaporated, and the residual solid was crystallized from ethanol to afford 1.84 g compound 3 as a pale yellow solid: yield 90%. The 1H NMR, 13 C-NMR and ESI-MS data testified the title compound's structure. ESI-MS: 347 (M+H)+ (100%); 1H NMR (500 MHz, CDCl3): 7.48 (s, 1H, –NH–),7.55 (s, 1H, Ph—H), 7.14 (d, 1H, Ph—H), 7.07 (d, 1H, Ph—H), 3.54 (s, 3H, –OCH3), 3.34–3.33 (m, 1H, –CH—O—C–), 2.36 (s, 3H, Ph—Me), 2.27 (s, 3H, Ph—Me), 2.12–2.07 (m, 4H, Cyclohexane-H4), 1.99–1.56 (m, 4H, Cyclohexane-H4); 13 C-NMR (100 MHz, CDCl3): 199.9, 165.1, 136.7, 136.0, 133.2, 131.5, 129.7, 127.4, 95.8, 76.8, 75.6, 66.1, 55.7, 32.5, 31.5, 26.4, 26.3, 21.0, 20.3.

S3. Refinement

The H atoms were geometrically placed (C–H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of title molecule, showing 50% displacement ellipsoids.

Fig. 2.

Fig. 2.

Reaction scheme.

Crystal data

C18H22N2O5 F(000) = 736
Mr = 346.38 Dx = 1.271 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.5707 (9) Å Cell parameters from 2205 reflections
b = 8.4181 (7) Å θ = 3.2–29.5°
c = 22.8720 (19) Å µ = 0.09 mm1
β = 100.703 (8)° T = 170 K
V = 1810.7 (3) Å3 Block, colourless
Z = 4 0.36 × 0.32 × 0.23 mm

Data collection

Agilent Xcalibur (Atlas, Gemini ultra) diffractometer 3308 independent reflections
Radiation source: Enhance (Mo) X-ray Source 2600 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 10.3592 pixels mm-1 θmax = 25.4°, θmin = 3.3°
ω scans h = −11→7
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −8→10
Tmin = 0.954, Tmax = 1.000 l = −22→27
6891 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.8521P] where P = (Fo2 + 2Fc2)/3
3308 reflections (Δ/σ)max < 0.001
229 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.35.11 (release 16-05-2011 CrysAlis171 .NET) (compiled May 16 2011,17:55:39) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.18294 (17) 1.31285 (17) 0.34437 (6) 0.0406 (4)
O2 0.09810 (17) 1.2327 (2) 0.42014 (7) 0.0500 (5)
O3 0.44250 (14) 1.14145 (16) 0.43813 (5) 0.0295 (3)
O4 −0.00240 (16) 0.9051 (2) 0.37430 (8) 0.0579 (5)
O5 0.32239 (19) 0.4533 (2) 0.56929 (7) 0.0558 (5)
N1 0.16126 (17) 1.2114 (2) 0.37880 (7) 0.0281 (4)
N2 0.33749 (16) 0.90936 (19) 0.45886 (6) 0.0245 (4)
H2 0.4057 0.8790 0.4880 0.029*
C1 0.2650 (2) 1.0141 (2) 0.31529 (8) 0.0277 (4)
C2 0.1642 (2) 1.0202 (3) 0.26206 (9) 0.0381 (5)
C3 0.2143 (3) 0.9836 (3) 0.21029 (10) 0.0558 (7)
H3 0.1491 0.9859 0.1735 0.067*
C4 0.3526 (3) 0.9447 (3) 0.20978 (11) 0.0612 (8)
H4 0.3801 0.9187 0.1731 0.073*
C5 0.4534 (3) 0.9422 (3) 0.26167 (10) 0.0483 (6)
C6 0.4058 (2) 0.9761 (2) 0.31421 (9) 0.0342 (5)
H6 0.4721 0.9732 0.3507 0.041*
C7 0.0114 (3) 1.0702 (3) 0.25703 (10) 0.0509 (7)
H7A −0.0125 1.0761 0.2968 0.076*
H7B −0.0505 0.9924 0.2330 0.076*
H7C −0.0024 1.1747 0.2379 0.076*
C8 0.6086 (3) 0.9084 (4) 0.26190 (13) 0.0732 (9)
H8A 0.6263 0.7941 0.2671 0.110*
H8B 0.6674 0.9663 0.2947 0.110*
H8C 0.6327 0.9428 0.2241 0.110*
C9 0.22283 (19) 1.0470 (2) 0.37501 (8) 0.0237 (4)
C10 0.1216 (2) 0.9211 (2) 0.39383 (8) 0.0305 (5)
C11 0.20633 (19) 0.8179 (2) 0.44258 (8) 0.0258 (4)
C12 0.34921 (19) 1.0401 (2) 0.42782 (8) 0.0228 (4)
C13 0.1293 (2) 0.8034 (3) 0.49537 (9) 0.0346 (5)
H13A 0.1177 0.9104 0.5118 0.042*
H13B 0.0334 0.7582 0.4815 0.042*
C14 0.2111 (2) 0.6980 (3) 0.54417 (9) 0.0374 (5)
H14A 0.3025 0.7494 0.5613 0.045*
H14B 0.1555 0.6857 0.5763 0.045*
C15 0.2394 (2) 0.5373 (3) 0.52057 (9) 0.0384 (5)
H15 0.1470 0.4806 0.5074 0.046*
C16 0.3164 (2) 0.5505 (2) 0.46846 (9) 0.0349 (5)
H16A 0.3296 0.4430 0.4527 0.042*
H16B 0.4117 0.5974 0.4823 0.042*
C17 0.2336 (2) 0.6532 (2) 0.41893 (9) 0.0328 (5)
H17A 0.1417 0.6015 0.4026 0.039*
H17B 0.2882 0.6635 0.3864 0.039*
C18 0.3060 (3) 0.2894 (3) 0.56796 (12) 0.0524 (7)
H18A 0.3302 0.2475 0.5311 0.079*
H18B 0.2071 0.2627 0.5696 0.079*
H18C 0.3691 0.2424 0.6023 0.079*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0575 (10) 0.0297 (8) 0.0332 (8) 0.0042 (7) 0.0051 (7) 0.0052 (7)
O2 0.0483 (10) 0.0597 (11) 0.0476 (9) 0.0133 (8) 0.0233 (8) −0.0020 (8)
O3 0.0273 (7) 0.0311 (7) 0.0276 (7) −0.0056 (6) −0.0009 (5) 0.0041 (6)
O4 0.0303 (9) 0.0716 (12) 0.0634 (11) −0.0161 (8) −0.0136 (8) 0.0371 (10)
O5 0.0640 (12) 0.0480 (10) 0.0476 (10) −0.0009 (8) −0.0099 (8) 0.0225 (8)
N1 0.0251 (9) 0.0339 (10) 0.0245 (8) 0.0026 (7) 0.0021 (7) 0.0004 (8)
N2 0.0227 (8) 0.0274 (9) 0.0214 (8) −0.0010 (7) −0.0009 (6) 0.0055 (7)
C1 0.0367 (11) 0.0236 (10) 0.0228 (9) −0.0002 (8) 0.0052 (8) 0.0010 (8)
C2 0.0505 (14) 0.0352 (12) 0.0253 (10) −0.0028 (10) −0.0015 (9) −0.0014 (9)
C3 0.084 (2) 0.0578 (16) 0.0226 (11) 0.0047 (15) 0.0014 (11) −0.0071 (11)
C4 0.093 (2) 0.0641 (18) 0.0323 (13) 0.0112 (16) 0.0262 (14) −0.0061 (12)
C5 0.0671 (17) 0.0443 (14) 0.0393 (13) 0.0146 (12) 0.0247 (12) 0.0037 (11)
C6 0.0424 (12) 0.0349 (11) 0.0267 (10) 0.0065 (10) 0.0106 (9) 0.0048 (9)
C7 0.0493 (15) 0.0596 (16) 0.0350 (12) −0.0003 (12) −0.0145 (10) −0.0009 (12)
C8 0.076 (2) 0.089 (2) 0.0660 (18) 0.0305 (18) 0.0426 (16) 0.0096 (17)
C9 0.0233 (10) 0.0254 (10) 0.0212 (9) 0.0009 (8) 0.0009 (7) 0.0036 (8)
C10 0.0258 (11) 0.0363 (11) 0.0275 (10) −0.0049 (9) 0.0003 (8) 0.0060 (9)
C11 0.0215 (10) 0.0308 (10) 0.0237 (9) −0.0033 (8) 0.0011 (7) 0.0057 (8)
C12 0.0207 (9) 0.0286 (10) 0.0192 (9) 0.0010 (8) 0.0039 (7) −0.0007 (8)
C13 0.0297 (11) 0.0420 (12) 0.0340 (11) 0.0025 (9) 0.0106 (9) 0.0106 (10)
C14 0.0338 (12) 0.0508 (14) 0.0294 (11) 0.0028 (10) 0.0108 (9) 0.0135 (10)
C15 0.0332 (12) 0.0409 (13) 0.0367 (11) −0.0065 (10) −0.0047 (9) 0.0161 (10)
C16 0.0354 (12) 0.0279 (11) 0.0381 (12) 0.0004 (9) −0.0021 (9) −0.0013 (9)
C17 0.0348 (12) 0.0326 (11) 0.0289 (10) −0.0060 (9) 0.0000 (8) −0.0008 (9)
C18 0.0645 (17) 0.0363 (13) 0.0544 (15) 0.0038 (12) 0.0059 (12) 0.0190 (12)

Geometric parameters (Å, º)

O1—N1 1.206 (2) C8—H8A 0.9800
O2—N1 1.226 (2) C8—H8B 0.9800
O3—C12 1.226 (2) C8—H8C 0.9800
O4—C10 1.195 (2) C9—C10 1.550 (3)
O5—C15 1.430 (2) C9—C12 1.544 (2)
O5—C18 1.388 (3) C10—C11 1.523 (3)
N1—C9 1.513 (2) C11—C13 1.532 (3)
N2—H2 0.8800 C11—C17 1.529 (3)
N2—C11 1.461 (2) C13—H13A 0.9900
N2—C12 1.325 (2) C13—H13B 0.9900
C1—C2 1.407 (3) C13—C14 1.523 (3)
C1—C6 1.390 (3) C14—H14A 0.9900
C1—C9 1.520 (3) C14—H14B 0.9900
C2—C3 1.392 (3) C14—C15 1.500 (3)
C2—C7 1.506 (3) C15—H15 1.0000
C3—H3 0.9500 C15—C16 1.518 (3)
C3—C4 1.366 (4) C16—H16A 0.9900
C4—H4 0.9500 C16—H16B 0.9900
C4—C5 1.384 (4) C16—C17 1.525 (3)
C5—C6 1.391 (3) C17—H17A 0.9900
C5—C8 1.511 (4) C17—H17B 0.9900
C6—H6 0.9500 C18—H18A 0.9800
C7—H7A 0.9800 C18—H18B 0.9800
C7—H7B 0.9800 C18—H18C 0.9800
C7—H7C 0.9800
C18—O5—C15 115.49 (19) N2—C11—C10 101.63 (15)
O1—N1—O2 124.68 (18) N2—C11—C13 110.96 (15)
O1—N1—C9 119.64 (15) N2—C11—C17 111.93 (15)
O2—N1—C9 115.55 (16) C10—C11—C13 110.73 (16)
C11—N2—H2 121.5 C10—C11—C17 111.17 (15)
C12—N2—H2 121.5 C17—C11—C13 110.18 (16)
C12—N2—C11 117.08 (15) O3—C12—N2 127.30 (17)
C2—C1—C9 121.12 (18) O3—C12—C9 124.13 (16)
C6—C1—C2 120.31 (18) N2—C12—C9 108.57 (15)
C6—C1—C9 118.57 (17) C11—C13—H13A 109.3
C1—C2—C7 125.23 (19) C11—C13—H13B 109.3
C3—C2—C1 116.0 (2) H13A—C13—H13B 108.0
C3—C2—C7 118.7 (2) C14—C13—C11 111.56 (16)
C2—C3—H3 118.4 C14—C13—H13A 109.3
C4—C3—C2 123.2 (2) C14—C13—H13B 109.3
C4—C3—H3 118.4 C13—C14—H14A 109.4
C3—C4—H4 119.4 C13—C14—H14B 109.4
C3—C4—C5 121.2 (2) H14A—C14—H14B 108.0
C5—C4—H4 119.4 C15—C14—C13 111.35 (17)
C4—C5—C6 116.8 (2) C15—C14—H14A 109.4
C4—C5—C8 122.3 (2) C15—C14—H14B 109.4
C6—C5—C8 121.0 (2) O5—C15—C14 106.08 (17)
C1—C6—C5 122.4 (2) O5—C15—H15 109.3
C1—C6—H6 118.8 O5—C15—C16 111.55 (18)
C5—C6—H6 118.8 C14—C15—H15 109.3
C2—C7—H7A 109.5 C14—C15—C16 111.32 (17)
C2—C7—H7B 109.5 C16—C15—H15 109.3
C2—C7—H7C 109.5 C15—C16—H16A 109.4
H7A—C7—H7B 109.5 C15—C16—H16B 109.4
H7A—C7—H7C 109.5 C15—C16—C17 111.29 (18)
H7B—C7—H7C 109.5 H16A—C16—H16B 108.0
C5—C8—H8A 109.5 C17—C16—H16A 109.4
C5—C8—H8B 109.5 C17—C16—H16B 109.4
C5—C8—H8C 109.5 C11—C17—H17A 109.5
H8A—C8—H8B 109.5 C11—C17—H17B 109.5
H8A—C8—H8C 109.5 C16—C17—C11 110.53 (16)
H8B—C8—H8C 109.5 C16—C17—H17A 109.5
N1—C9—C1 112.92 (15) C16—C17—H17B 109.5
N1—C9—C10 109.82 (15) H17A—C17—H17B 108.1
N1—C9—C12 104.28 (14) O5—C18—H18A 109.5
C1—C9—C10 114.16 (16) O5—C18—H18B 109.5
C1—C9—C12 113.32 (15) O5—C18—H18C 109.5
C12—C9—C10 101.33 (14) H18A—C18—H18B 109.5
O4—C10—C9 127.03 (18) H18A—C18—H18C 109.5
O4—C10—C11 124.44 (18) H18B—C18—H18C 109.5
C11—C10—C9 108.53 (15)
O1—N1—C9—C1 −18.9 (2) C6—C1—C9—N1 120.84 (19)
O1—N1—C9—C10 −147.60 (16) C6—C1—C9—C10 −112.8 (2)
O1—N1—C9—C12 104.50 (18) C6—C1—C9—C12 2.6 (2)
O2—N1—C9—C1 165.05 (16) C7—C2—C3—C4 176.7 (3)
O2—N1—C9—C10 36.4 (2) C8—C5—C6—C1 177.3 (2)
O2—N1—C9—C12 −71.51 (19) C9—C1—C2—C3 −178.3 (2)
O4—C10—C11—N2 −167.1 (2) C9—C1—C2—C7 4.9 (3)
O4—C10—C11—C13 −49.2 (3) C9—C1—C6—C5 179.1 (2)
O4—C10—C11—C17 73.6 (3) C9—C10—C11—N2 12.77 (19)
O5—C15—C16—C17 −174.73 (17) C9—C10—C11—C13 130.69 (17)
N1—C9—C10—O4 53.2 (3) C9—C10—C11—C17 −106.48 (18)
N1—C9—C10—C11 −126.63 (16) C10—C9—C12—O3 −164.71 (18)
N1—C9—C12—O3 −50.6 (2) C10—C9—C12—N2 14.88 (19)
N1—C9—C12—N2 128.95 (15) C10—C11—C13—C14 178.93 (18)
N2—C11—C13—C14 −69.0 (2) C10—C11—C17—C16 −179.12 (16)
N2—C11—C17—C16 68.0 (2) C11—N2—C12—O3 171.67 (18)
C1—C2—C3—C4 −0.4 (4) C11—N2—C12—C9 −7.9 (2)
C1—C9—C10—O4 −74.7 (3) C11—C13—C14—C15 −55.5 (2)
C1—C9—C10—C11 105.40 (18) C12—N2—C11—C10 −3.1 (2)
C1—C9—C12—O3 72.5 (2) C12—N2—C11—C13 −120.87 (18)
C1—C9—C12—N2 −107.87 (17) C12—N2—C11—C17 115.59 (18)
C2—C1—C6—C5 −0.3 (3) C12—C9—C10—O4 163.1 (2)
C2—C1—C9—N1 −59.8 (2) C12—C9—C10—C11 −16.77 (19)
C2—C1—C9—C10 66.6 (2) C13—C11—C17—C16 −56.0 (2)
C2—C1—C9—C12 −178.06 (18) C13—C14—C15—O5 176.97 (17)
C2—C3—C4—C5 −1.3 (4) C13—C14—C15—C16 55.5 (2)
C3—C4—C5—C6 2.1 (4) C14—C15—C16—C17 −56.5 (2)
C3—C4—C5—C8 −176.6 (3) C15—C16—C17—C11 56.7 (2)
C4—C5—C6—C1 −1.3 (3) C17—C11—C13—C14 55.5 (2)
C6—C1—C2—C3 1.1 (3) C18—O5—C15—C14 150.9 (2)
C6—C1—C2—C7 −175.7 (2) C18—O5—C15—C16 −87.7 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O3i 0.88 2.02 2.8853 (19) 167
C4—H4···O5ii 0.95 2.57 3.287 (3) 132
C7—H7B···O1iii 0.98 2.49 3.454 (3) 168
C14—H14B···O2iv 0.99 2.54 3.265 (3) 130

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+3/2, z−1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7342).

References

  1. Brück, E., Elbert, A., Fischer, R., Krueger, S., Kühnhold, J., Klueken, A. M., Nauen, R., Niebes, J. F., Reckmann, U., Schnorbach, H. J., Steffens, R. & van Waetermeulen, X. (2009). Crop Prot. 28, 838–844.
  2. Campbell, A. C., Maidment, M. S., Pick, J. H. & Stevenson, D. F. M. (1985). J. Chem. Soc. Perkin Trans. 1, p. 1567.
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Fischer, R., Bretschneider, T., Lehr, S., Arnold, C., Dittgen, J., Feucht, D., Kehne, H., Malsam, O., Rosinger, C. H., Franken, E. M. & Goergens, U. (2010). US Patent No. 20100279873A1.
  5. Fischer, R. & Weiss, H. C. (2008). Bayer CropSci. J. 61(2), 127–140.
  6. Maus, C. (2008). Bayer CropSci. J. 61, 159–180.
  7. Schobert, R. & Schlenk, A. (2008). Bioorg. Med. Chem. 16, 4203–4221. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015004715/hb7342sup1.cif

e-71-0o238-sup1.cif (21.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004715/hb7342Isup2.hkl

e-71-0o238-Isup2.hkl (162.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004715/hb7342Isup3.cml

. DOI: 10.1107/S2056989015004715/hb7342fig1.tif

The mol­ecular structure of title mol­ecule, showing 50% displacement ellipsoids.

. DOI: 10.1107/S2056989015004715/hb7342fig2.tif

Reaction scheme.

CCDC reference: 1052631

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES