Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 4;71(Pt 4):o218–o219. doi: 10.1107/S205698901500290X

Crystal structure of 4-azido­methyl-6-tert-butyl-2H-chromen-2-one

Nasseem El-Khatatneh a, Chandra a, D Shamala b, K Shivashankar b, Mukhokosi Emma Panzi a, M Mahendra a,*
PMCID: PMC4438804  PMID: 26029422

Abstract

In the title compound, C14H15N3O2, one of the methyl C atoms of the tert-butyl group lies almost in the plane of the chromene ring system [deviation = −0.097 (2) Å], one lies above and one lies below [deviations = 1.460 (3) and 1.006 (3) Å, respectively]. The C—C—N—N torsion angle is 142.33 (17)°. In the crystal, moelcules are linked by weak C—H⋯O hydrogen bonds to generate C(6) chains propagating in the [010] direction.

Keywords: crystal structure, chromene, coumarin, hydrogen bonding

Related literature  

For background to the biological properties of coumarins, see: Basanagouda et al. (2009); Liu et al. (2008); Mustafa et al. (2011); Ronad et al. (2008); Tian et al. (2000); Puttaraju et al. (2013). For a related structure, see: Chandra et al. (2014).graphic file with name e-71-0o218-scheme1.jpg

Experimental  

Crystal data  

  • C14H15N3O2

  • M r = 257.29

  • Monoclinic, Inline graphic

  • a = 10.6816 (7) Å

  • b = 11.1416 (8) Å

  • c = 11.5409 (8) Å

  • β = 100.674 (4)°

  • V = 1349.72 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • 5911 measured reflections

  • 2165 independent reflections

  • 1949 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.132

  • S = 1.04

  • 2165 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901500290X/hb7363sup1.cif

e-71-0o218-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500290X/hb7363Isup2.hkl

e-71-0o218-Isup2.hkl (106.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500290X/hb7363Isup3.cml

. DOI: 10.1107/S205698901500290X/hb7363fig1.tif

Perspective diagram of the mol­ecule with 50% probability displacement ellipsoids.

b . DOI: 10.1107/S205698901500290X/hb7363fig2.tif

Packing diagram of the mol­ecule viewed parallel to the b axis.

CCDC reference: 1048730

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C14H14AO2i 0.97 2.55 3.311(2) 135

Symmetry code: (i) Inline graphic.

Acknowledgments

MM would like to thank UGC, New Delhi, Government of India, for the award of a project under the head F. No. 41–920/2012(SR) (dated: 25-07-2012). In addition, SD is thankful to the Council of Scientific and Industrial Research, New Delhi, India, for financial assistance [grant No. 02 (0172)/13/EMR-II].

supplementary crystallographic information

S1. Comment

Coumarin and its substituents are of well known heterocyclic compounds, which have a variety of biologically activities; such as anti-tumour (Mustafa et al., 2011), anti-bacterial (Basanagouda et al., 2009; Liu et al., 2008) and analgesic (Ronad et al., 2008) agents. In addition, coumarin derivatives have been found to be very useful in many applications; such as nonlinear optical materials and as intermediates for the drug synthesis (Tian et al., 2000). In our previous work (Puttaraju et al., 2013), we have reported the synthesis, in vitro antimicrobial and anticancer activities of new coumarin derivatives substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones. In continuation to this, we have synthesized the title compound to study its molecular and crystal structure.

In the molecular structure of the title compound (Fig. 1), the chromene moiety is almost planar, with the maximum deviation from the mean plane being 0.093 (2) Å for atom C10, respectively. The azidomethyl group is in anti-periplanar conformation with respect to the chromene moiety, as indicated by the torsion angle value of 172.35 (14)° (C3–C4–C14–N1). The bond lengths and angles are within normal ranges and are comparable to related structure (Chandra et al., 2014). The crystal structure features C—H···O hydrogen bonds, which link the molecules into [010] chains, as shown in Fig. 2.

S2. Experimental

6-tert-Butyl-4-bromomethylcoumarins (0.001 mmol. 0.5 g) were taken in 15 ml acetone in a round bottomed flask and stirred. To this, sodium azide (0.002 mol, 0.13 g) in 5 ml of water was added drop wise with stirring, which was continued for 3 hrs (reaction was monitored by TLC). The reaction mixture was poured in to ice cold water, separated solid was filtered and recrystallized from ethyl alcohol to get pale yelllow blocks of the title compound.

S3. Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atom, with C–H distance in the range of 0.93 to 0.97 Å; Uiso(H) = 1.2–1.5Ueq (carrier atom) for all H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective diagram of the molecule with 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram of the molecule viewed parallel to the b axis.

Crystal data

C14H15N3O2 F(000) = 544
Mr = 257.29 Dx = 1.266 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 2165 reflections
a = 10.6816 (7) Å θ = 5.6–64.5°
b = 11.1416 (8) Å µ = 0.71 mm1
c = 11.5409 (8) Å T = 293 K
β = 100.674 (4)° Block, pale yellow
V = 1349.72 (16) Å3 0.30 × 0.25 × 0.20 mm
Z = 4

Data collection

Bruker X8 Proteum diffractometer 1949 reflections with I > 2σ(I)
Radiation source: Bruker MicroStar microfocus rotating anode Rint = 0.037
Helios multilayer optics monochromator θmax = 64.5°, θmin = 5.6°
Detector resolution: 10.7 pixels mm-1 h = −12→12
φ and ω scans k = −12→12
5911 measured reflections l = −13→13
2165 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0667P)2 + 0.2532P] where P = (Fo2 + 2Fc2)/3
2165 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.59056 (12) 0.02266 (11) 0.31873 (10) 0.0633 (4)
O2 0.43714 (15) 0.00517 (14) 0.16423 (12) 0.0886 (6)
N1 0.32064 (15) −0.31631 (13) 0.42079 (19) 0.0852 (7)
N2 0.29968 (12) −0.42384 (13) 0.41655 (12) 0.0581 (5)
N3 0.26741 (17) −0.51960 (15) 0.40562 (16) 0.0784 (7)
C1 0.79791 (14) −0.09815 (13) 0.63907 (13) 0.0464 (5)
C2 0.68585 (13) −0.15469 (12) 0.58820 (12) 0.0441 (4)
C3 0.61248 (13) −0.11775 (12) 0.48071 (12) 0.0429 (4)
C4 0.49582 (14) −0.17576 (13) 0.42299 (13) 0.0478 (5)
C5 0.43662 (16) −0.13424 (15) 0.31759 (14) 0.0585 (6)
C6 0.48347 (19) −0.03397 (17) 0.26019 (15) 0.0642 (6)
C7 0.65570 (15) −0.01975 (13) 0.42495 (13) 0.0493 (5)
C8 0.76681 (17) 0.03930 (15) 0.47367 (16) 0.0593 (6)
C9 0.83629 (16) −0.00013 (14) 0.57861 (16) 0.0566 (5)
C10 0.88114 (15) −0.14115 (14) 0.75389 (14) 0.0553 (5)
C11 0.9105 (3) −0.0370 (2) 0.8404 (2) 0.0925 (9)
C12 1.0051 (2) −0.1916 (3) 0.7259 (2) 0.0969 (10)
C13 0.8160 (2) −0.2375 (2) 0.81437 (18) 0.0840 (8)
C14 0.44697 (15) −0.27965 (14) 0.48332 (16) 0.0581 (5)
H2 0.65810 −0.21990 0.62690 0.0530*
H5 0.36230 −0.17200 0.28040 0.0700*
H8 0.79420 0.10520 0.43560 0.0710*
H9 0.91130 0.03960 0.61060 0.0680*
H11A 0.83230 −0.00230 0.85410 0.1390*
H11B 0.95900 0.02280 0.80810 0.1390*
H11C 0.95890 −0.06580 0.91360 0.1390*
H12A 1.05700 −0.22160 0.79690 0.1450*
H12B 1.05020 −0.12930 0.69340 0.1450*
H12C 0.98610 −0.25570 0.66980 0.1450*
H13A 0.73560 −0.20790 0.82820 0.1260*
H13B 0.86890 −0.25830 0.88820 0.1260*
H13C 0.80210 −0.30740 0.76490 0.1260*
H14A 0.50560 −0.34650 0.48640 0.0700*
H14B 0.44200 −0.25750 0.56360 0.0700*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0776 (8) 0.0686 (8) 0.0471 (7) 0.0085 (6) 0.0204 (6) 0.0127 (5)
O2 0.1016 (11) 0.1144 (12) 0.0476 (8) 0.0252 (9) 0.0082 (7) 0.0190 (7)
N1 0.0611 (9) 0.0489 (9) 0.1292 (15) −0.0037 (7) −0.0249 (9) −0.0015 (8)
N2 0.0521 (8) 0.0577 (9) 0.0598 (9) −0.0068 (6) −0.0019 (6) −0.0048 (6)
N3 0.0802 (11) 0.0653 (11) 0.0841 (12) −0.0237 (8) 0.0010 (9) −0.0092 (8)
C1 0.0489 (8) 0.0428 (8) 0.0493 (8) −0.0053 (6) 0.0141 (6) −0.0055 (6)
C2 0.0509 (8) 0.0375 (7) 0.0453 (8) −0.0036 (6) 0.0128 (6) −0.0017 (6)
C3 0.0502 (8) 0.0387 (7) 0.0419 (8) 0.0032 (6) 0.0143 (6) −0.0056 (6)
C4 0.0539 (8) 0.0422 (8) 0.0467 (8) 0.0079 (6) 0.0080 (6) −0.0100 (6)
C5 0.0616 (10) 0.0630 (10) 0.0482 (9) 0.0110 (8) 0.0030 (7) −0.0106 (7)
C6 0.0770 (12) 0.0753 (11) 0.0424 (9) 0.0209 (9) 0.0166 (8) 0.0016 (8)
C7 0.0617 (9) 0.0488 (8) 0.0422 (8) 0.0082 (7) 0.0223 (7) 0.0029 (6)
C8 0.0679 (10) 0.0516 (9) 0.0653 (11) −0.0080 (8) 0.0307 (8) 0.0070 (7)
C9 0.0556 (9) 0.0527 (9) 0.0644 (10) −0.0122 (7) 0.0189 (8) −0.0018 (7)
C10 0.0535 (9) 0.0556 (9) 0.0541 (9) −0.0116 (7) 0.0027 (7) −0.0021 (7)
C11 0.1146 (18) 0.0844 (14) 0.0685 (13) −0.0236 (13) −0.0093 (12) −0.0150 (11)
C12 0.0754 (13) 0.1139 (19) 0.0993 (17) 0.0241 (12) 0.0111 (12) 0.0184 (14)
C13 0.0873 (13) 0.0933 (15) 0.0614 (11) −0.0298 (11) −0.0126 (10) 0.0242 (10)
C14 0.0529 (9) 0.0432 (8) 0.0715 (10) −0.0048 (7) −0.0059 (7) −0.0042 (7)

Geometric parameters (Å, º)

O1—C6 1.370 (2) C10—C12 1.527 (3)
O1—C7 1.3763 (19) C10—C13 1.518 (3)
O2—C6 1.208 (2) C2—H2 0.9300
N1—N2 1.218 (2) C5—H5 0.9300
N1—C14 1.466 (2) C8—H8 0.9300
N2—N3 1.121 (2) C9—H9 0.9300
C1—C2 1.384 (2) C11—H11A 0.9600
C1—C9 1.398 (2) C11—H11B 0.9600
C1—C10 1.530 (2) C11—H11C 0.9600
C2—C3 1.4008 (19) C12—H12A 0.9600
C3—C4 1.452 (2) C12—H12B 0.9600
C3—C7 1.389 (2) C12—H12C 0.9600
C4—C5 1.345 (2) C13—H13A 0.9600
C4—C14 1.494 (2) C13—H13B 0.9600
C5—C6 1.435 (3) C13—H13C 0.9600
C7—C8 1.382 (2) C14—H14A 0.9700
C8—C9 1.370 (3) C14—H14B 0.9700
C10—C11 1.525 (3)
C6—O1—C7 121.29 (13) C3—C2—H2 119.00
N2—N1—C14 116.07 (15) C4—C5—H5 119.00
N1—N2—N3 172.26 (18) C6—C5—H5 119.00
C2—C1—C9 117.04 (14) C7—C8—H8 120.00
C2—C1—C10 122.92 (13) C9—C8—H8 120.00
C9—C1—C10 120.01 (14) C1—C9—H9 119.00
C1—C2—C3 122.70 (13) C8—C9—H9 119.00
C2—C3—C4 124.58 (13) C10—C11—H11A 110.00
C2—C3—C7 117.50 (13) C10—C11—H11B 110.00
C4—C3—C7 117.91 (13) C10—C11—H11C 109.00
C3—C4—C5 118.81 (14) H11A—C11—H11B 109.00
C3—C4—C14 118.39 (13) H11A—C11—H11C 109.00
C5—C4—C14 122.81 (15) H11B—C11—H11C 109.00
C4—C5—C6 122.65 (16) C10—C12—H12A 109.00
O1—C6—O2 116.67 (17) C10—C12—H12B 110.00
O1—C6—C5 117.49 (15) C10—C12—H12C 109.00
O2—C6—C5 125.85 (18) H12A—C12—H12B 109.00
O1—C7—C3 121.73 (14) H12A—C12—H12C 109.00
O1—C7—C8 116.95 (14) H12B—C12—H12C 109.00
C3—C7—C8 121.31 (14) C10—C13—H13A 109.00
C7—C8—C9 119.38 (15) C10—C13—H13B 110.00
C1—C9—C8 122.06 (16) C10—C13—H13C 109.00
C1—C10—C11 110.18 (14) H13A—C13—H13B 109.00
C1—C10—C12 108.64 (14) H13A—C13—H13C 109.00
C1—C10—C13 112.18 (14) H13B—C13—H13C 109.00
C11—C10—C12 109.72 (19) N1—C14—H14A 109.00
C11—C10—C13 107.06 (16) N1—C14—H14B 109.00
C12—C10—C13 109.04 (17) C4—C14—H14A 109.00
N1—C14—C4 110.84 (14) C4—C14—H14B 109.00
C1—C2—H2 119.00 H14A—C14—H14B 108.00
C7—O1—C6—O2 −175.54 (16) C2—C3—C4—C5 −177.54 (15)
C7—O1—C6—C5 4.2 (2) C2—C3—C4—C14 2.2 (2)
C6—O1—C7—C3 −3.5 (2) C7—C3—C4—C14 −178.75 (14)
C6—O1—C7—C8 176.23 (16) C2—C3—C7—O1 179.59 (13)
N2—N1—C14—C4 142.33 (17) C2—C3—C7—C8 −0.1 (2)
C10—C1—C2—C3 −177.49 (14) C4—C3—C7—O1 0.5 (2)
C2—C1—C9—C8 0.1 (2) C4—C3—C7—C8 −179.21 (15)
C10—C1—C9—C8 177.99 (15) C7—C3—C4—C5 1.5 (2)
C2—C1—C10—C11 −128.80 (18) C3—C4—C5—C6 −0.6 (2)
C2—C1—C10—C12 110.99 (19) C14—C4—C5—C6 179.65 (16)
C2—C1—C10—C13 −9.6 (2) C5—C4—C14—N1 −7.9 (2)
C9—C1—C2—C3 0.3 (2) C3—C4—C14—N1 172.35 (14)
C9—C1—C10—C12 −66.8 (2) C4—C5—C6—O1 −2.2 (3)
C9—C1—C10—C13 172.62 (15) C4—C5—C6—O2 177.53 (19)
C9—C1—C10—C11 53.5 (2) C3—C7—C8—C9 0.5 (2)
C1—C2—C3—C4 178.72 (14) O1—C7—C8—C9 −179.18 (15)
C1—C2—C3—C7 −0.3 (2) C7—C8—C9—C1 −0.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C14—H14A···O2i 0.97 2.55 3.311 (2) 135

Symmetry code: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7363).

References

  1. Basanagouda, M., Kulkarni, M. V., Sharma, D., Gupta, V. K., Pranesha Sandhyarani, P. & Rasal, V. P. (2009). J. Chem. Sci. 121, 485–495.
  2. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chandra, Puttaraju, K. B., Mahesh, S. S., Shivashankar, K., Lokanath, N. K. & Madegowda, M. (2014). Bioinformation, 10, 288–292. [DOI] [PMC free article] [PubMed]
  4. Liu, X., Dong, M., Chen, X., Jiang, M., Lv, X. & Zhou, J. (2008). Appl. Microbiol. Biotechnol. 78, 241–247. [DOI] [PubMed]
  5. Mustafa, M. S., El-Abadelah, M. M., Zihlif, M. A., Naffa, R. G. & Mubarak, M. S. (2011). Molecules, 16, 4305–4317. [DOI] [PMC free article] [PubMed]
  6. Puttaraju, K. B., Shivashankar, K., Chandra, Mahendra, M., Rasal, V. P., Venkata Vivek, P. N., Rai, K. & Chanu, M. B. (2013). Eur. J. Med. Chem. 69, 316–322. [DOI] [PubMed]
  7. Ronad, P., Dharbamalla, S., Hunshal, R. & Maddi, V. (2008). Arch. Pharm. Chem. Life Sci. 341, 696–700. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Tian, Y., Akiyama, E., Nagase, Y., Kanazawa, A., Tsutsumi, O. & Ikeda, T. (2000). Macromol. Chem. Phys. 201, 1640–1652.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S205698901500290X/hb7363sup1.cif

e-71-0o218-sup1.cif (18KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S205698901500290X/hb7363Isup2.hkl

e-71-0o218-Isup2.hkl (106.5KB, hkl)

Supporting information file. DOI: 10.1107/S205698901500290X/hb7363Isup3.cml

. DOI: 10.1107/S205698901500290X/hb7363fig1.tif

Perspective diagram of the mol­ecule with 50% probability displacement ellipsoids.

b . DOI: 10.1107/S205698901500290X/hb7363fig2.tif

Packing diagram of the mol­ecule viewed parallel to the b axis.

CCDC reference: 1048730

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES