Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 14;71(Pt 4):o235. doi: 10.1107/S2056989015004661

Crystal structure of N-[(2-hy­droxy­naphthalen-1-yl)(4-methyl­phen­yl)meth­yl]acetamide

Sharanbasappa Khanapure a, Gajanan Rashinkar a, Tarulata Chhowala b, Sumati Anthal c, Rajni Kant c,*
PMCID: PMC4438828  PMID: 26029431

Abstract

In the title mol­ecule, C20H19NO2, the naphthalene ring system subtends a dihedral angle of 82.50 (7)° with the benzene ring and an intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, which generate C(8) chains propagating in the [010] direction. The crystal structure also features weak π–π inter­actions [centroid–centroid separation = 3.7246 (10) Å].

Keywords: crystal structure, naphthalene, acetamide, π–π inter­actions, hydrogen bonding

Related literature  

For background to N-(substituted phen­yl)acetamides, see: Schleiss et al. (2008). For further synthetic details, see: Shaterian et al. (2008). For related structures, see: Mosslemin et al. (2007); NizamMohideen et al. (2009).graphic file with name e-71-0o235-scheme1.jpg

Experimental  

Crystal data  

  • C20H19NO2

  • M r = 305.36

  • Monoclinic, Inline graphic

  • a = 10.4324 (4) Å

  • b = 14.0786 (5) Å

  • c = 11.0356 (4) Å

  • β = 98.741 (2)°

  • V = 1602.01 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.20 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.980, T max = 0.984

  • 12272 measured reflections

  • 2821 independent reflections

  • 2391 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.122

  • S = 1.05

  • 2821 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015004661/hb7375sup1.cif

e-71-0o235-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004661/hb7375Isup2.hkl

e-71-0o235-Isup2.hkl (135.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004661/hb7375Isup3.cml

. DOI: 10.1107/S2056989015004661/hb7375fig1.tif

The mol­ecular configuration of (I). Displacement ellipsoids are drawn at the 30% probability level.

b . DOI: 10.1107/S2056989015004661/hb7375fig2.tif

The packing arrangement of mol­ecules viewed down the b axis.

CCDC reference: 959797

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AO1 0.86 2.20 2.7396(16) 121
O1H1BO2i 0.82 1.85 2.6498(15) 165

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

S1. Comment

1-Amidoalkyl-2-naphthol scaffolds are of significant medicinal relevance since they can be converted into hypertensive and bradycardiac active 1-aminoalkyl-2-naphthols by amine hydrolysis reactions [Schleiss et al., 2008]. As part of our studies in this area, we now describe the synthesis and structure of the title compound, (I).

The conformation of (I), together with the atom-numbering scheme, is shown in Fig. 1. In the structure, all bond lengths are comparable with those in previously reported structures (Mosslemin et al., 2007, NizamMohideen et al., 2009). Atom O1 deviating by 0.009 (1) Å from the least squares plane of the naphthalene ring. The dihedral angle between the naphthalene and benzene ring(C2/C3/C4/C5/C7/C8) is 82.5 (10)°. Examination of non bonded contacts reveals the presence of one N—H···O intramolecular hydrogen bond between N1 and hydroxyl atom O1 via H1 which results in the formation of pseudo six membered ring with S(6) graph-set motif. In this crystal, adjacent molecules are interconnected through O—H···O hydrogen bonds, which link the molecules into chains running along b axis. The crystal structure is further stabilized by π-π interactions between phenyl rings [centroid-centroid separation = 3.725 Å, interplaner spacing = 3.571 Å and centroid shift = 1.06 Å] where Cg1 and Cg2 represents the centre of gravity of rings (C2/C3/C4/C5/C7/C8) and (C11—C16), respectively.

S2. Experimental

The compound N-[(phenyl)-(2-hydroxy-naphthalen-1-yl)- methyl]acetamide was synthesized by using benzaldehyde, 2-naphthol and acetamide by using Cp2ZrCl2 as a catalyst at room temperature. A mixture of 2-naphthol (1 mmol), benzaldehyde (1 mmol), acetamide (1.2 mmol) and zirconocene dichloride (20 mol%) was stirred in ethylene dichloride (5 ml) at room temperature for 10 h. After completion of reaction, as indicated by TLC, the reaction mixture was quenched in cold water. The obtained crude solid was filtered and purified by column chromatography on silica gel (Merck. 60–120 mesh, ethyl acetate: hexane)to afford the pure product in 72% yield. The identity of the compound was ascertained on the basis of FTIR, 1HNMR and 13CNMR spectroscopy as well as by mass spectrometry. The physical and spectroscopic data are consistent with the proposed structure and are in harmony with the literature values (Shaterian et al., 2008). The IR spectrum exhibits broad absorption band at 3435 for O—H stretching and a sharp band at 3230 for N—H stretching of amide. The presence of amide group was apparent from strong absorptions at 1638 (C=O stretching) and 1597 (C—N stretching)·The 1H NMR (300 MHz, DMSO-d6) spectra of N-[(2-Hydroxynaphthalen-1-yl)(4-methylphenyl) methyl]acetamideexhibited singlets at δ 2.01 and 2.13 for protons of two methylgropus. The signals for amidic N—H and phenolic O—H protons appeared at 8.20 (s) and 9,96 (s) respectively. The two multiplets in the region 7.00–7.82 were assigned to ten aromatic protons and one methine proton. The proton decoupled 13 C NMR (75 MHz, DMSO-d6)spectra of N-[(2-Hydroxynaphthalen-1-yl) (4-methylphenyl)methyl]acetamidedisplay 19 distinct signals at 170.26, 153.43,139.67, 135.80, 132.64, 129.72, 129.08,128.86, 126.92,126.36, 123.53,122.98, 119.18, 118.82which is in agreement with the proposed structure. The Mass spectrum MS (EI): of this compound displayed the molecular ion peak at m/z = 306 (M+) which is in agreement with the proposed structure.

S3. Refinement

All H atoms were positioned geometrically and were treated as riding on their parent C atoms, with C—H distances of 0.93–0.98 A; and with Uiso(H) = 1.2Ueq(C), except for the methyl groups where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular configuration of (I). Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing arrangement of molecules viewed down the b axis.

Crystal data

C20H19NO2 F(000) = 648
Mr = 305.36 Dx = 1.266 Mg m3Dm = 1.264 Mg m3Dm measured by not measured
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6588 reflections
a = 10.4324 (4) Å θ = 2.5–28.2°
b = 14.0786 (5) Å µ = 0.08 mm1
c = 11.0356 (4) Å T = 296 K
β = 98.741 (2)° Block, colourless
V = 1602.01 (10) Å3 0.25 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 2821 independent reflections
Radiation source: fine-focus sealed tube 2391 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.020
φ and ω scans θmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.980, Tmax = 0.984 k = −15→16
12272 measured reflections l = −13→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.5039P] where P = (Fo2 + 2Fc2)/3
2821 reflections (Δ/σ)max < 0.001
209 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.70578 (14) 0.25289 (10) 0.87937 (14) 0.0381 (3)
H1 0.6938 0.3100 0.9271 0.046*
C2 0.78237 (14) 0.18214 (10) 0.96674 (14) 0.0379 (3)
C3 0.72170 (16) 0.11312 (12) 1.02635 (16) 0.0510 (4)
H3 0.6318 0.1079 1.0110 0.061*
C4 0.79230 (18) 0.05162 (13) 1.10855 (18) 0.0598 (5)
H4 0.7488 0.0058 1.1474 0.072*
C5 0.92559 (18) 0.05652 (12) 1.13422 (16) 0.0527 (4)
C6 1.0028 (2) −0.01018 (15) 1.2240 (2) 0.0748 (6)
H6A 1.0934 0.0045 1.2300 0.112*
H6B 0.9881 −0.0744 1.1961 0.112*
H6C 0.9761 −0.0032 1.3030 0.112*
C7 0.98531 (17) 0.12598 (14) 1.07495 (17) 0.0578 (5)
H7 1.0752 0.1312 1.0904 0.069*
C8 0.91576 (16) 0.18805 (12) 0.99343 (16) 0.0508 (4)
H8 0.9593 0.2346 0.9559 0.061*
C9 0.83298 (15) 0.36630 (11) 0.77479 (15) 0.0426 (4)
C10 0.89465 (19) 0.38493 (14) 0.66304 (18) 0.0614 (5)
H10A 0.8856 0.3298 0.6112 0.092*
H10B 0.9850 0.3988 0.6872 0.092*
H10C 0.8529 0.4381 0.6191 0.092*
C11 0.57167 (14) 0.21783 (10) 0.82499 (13) 0.0358 (3)
C12 0.56126 (15) 0.14446 (10) 0.74112 (14) 0.0393 (4)
C13 0.44045 (16) 0.10999 (11) 0.68525 (15) 0.0466 (4)
H13 0.4361 0.0611 0.6280 0.056*
C14 0.32992 (16) 0.14825 (12) 0.71506 (16) 0.0493 (4)
H14 0.2501 0.1255 0.6772 0.059*
C15 0.33371 (15) 0.22181 (12) 0.80244 (15) 0.0448 (4)
C16 0.45625 (14) 0.25743 (10) 0.85831 (13) 0.0385 (4)
C17 0.45539 (16) 0.33110 (12) 0.94630 (16) 0.0492 (4)
H17 0.5338 0.3556 0.9851 0.059*
C18 0.34242 (18) 0.36669 (15) 0.97517 (19) 0.0632 (5)
H18 0.3450 0.4150 1.0330 0.076*
C19 0.22255 (18) 0.33162 (16) 0.9191 (2) 0.0685 (6)
H19 0.1459 0.3565 0.9391 0.082*
C20 0.21922 (17) 0.26107 (14) 0.83527 (19) 0.0601 (5)
H20 0.1393 0.2378 0.7983 0.072*
N1 0.77811 (12) 0.28136 (9) 0.78136 (12) 0.0424 (3)
H1A 0.7856 0.2408 0.7246 0.051*
O1 0.67338 (11) 0.10791 (8) 0.71078 (11) 0.0497 (3)
H1B 0.6595 0.0546 0.6818 0.075*
O2 0.83171 (12) 0.42693 (8) 0.85572 (11) 0.0548 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0395 (8) 0.0307 (7) 0.0462 (8) −0.0022 (6) 0.0133 (7) −0.0001 (6)
C2 0.0374 (8) 0.0347 (8) 0.0420 (8) −0.0016 (6) 0.0073 (6) −0.0045 (6)
C3 0.0395 (9) 0.0529 (10) 0.0601 (10) −0.0034 (7) 0.0065 (8) 0.0127 (8)
C4 0.0596 (11) 0.0546 (11) 0.0628 (12) −0.0048 (8) 0.0017 (9) 0.0175 (9)
C5 0.0580 (11) 0.0473 (10) 0.0486 (10) 0.0063 (8) −0.0051 (8) −0.0065 (7)
C6 0.0827 (15) 0.0659 (13) 0.0670 (13) 0.0196 (11) −0.0172 (11) −0.0003 (10)
C7 0.0391 (9) 0.0678 (12) 0.0630 (11) 0.0021 (8) −0.0038 (8) −0.0070 (9)
C8 0.0410 (9) 0.0523 (10) 0.0587 (10) −0.0089 (7) 0.0063 (7) −0.0005 (8)
C9 0.0406 (8) 0.0347 (8) 0.0531 (9) −0.0017 (6) 0.0090 (7) 0.0078 (7)
C10 0.0683 (12) 0.0529 (10) 0.0681 (12) −0.0112 (9) 0.0271 (10) 0.0078 (9)
C11 0.0382 (8) 0.0299 (7) 0.0399 (8) −0.0006 (6) 0.0079 (6) 0.0058 (6)
C12 0.0444 (8) 0.0305 (7) 0.0443 (8) 0.0006 (6) 0.0108 (7) 0.0051 (6)
C13 0.0550 (10) 0.0365 (8) 0.0472 (9) −0.0065 (7) 0.0045 (7) −0.0016 (7)
C14 0.0449 (9) 0.0481 (9) 0.0527 (10) −0.0073 (7) 0.0004 (7) 0.0039 (7)
C15 0.0400 (9) 0.0455 (9) 0.0493 (9) −0.0001 (7) 0.0078 (7) 0.0082 (7)
C16 0.0405 (8) 0.0361 (8) 0.0400 (8) −0.0001 (6) 0.0090 (6) 0.0063 (6)
C17 0.0449 (9) 0.0520 (10) 0.0528 (10) −0.0019 (7) 0.0138 (7) −0.0055 (8)
C18 0.0571 (11) 0.0668 (12) 0.0699 (12) 0.0024 (9) 0.0240 (9) −0.0157 (10)
C19 0.0452 (10) 0.0796 (14) 0.0850 (14) 0.0078 (9) 0.0238 (10) −0.0075 (11)
C20 0.0389 (9) 0.0704 (12) 0.0715 (12) −0.0007 (8) 0.0103 (8) −0.0005 (10)
N1 0.0474 (8) 0.0336 (7) 0.0491 (8) −0.0052 (5) 0.0166 (6) −0.0001 (5)
O1 0.0517 (7) 0.0348 (6) 0.0656 (8) 0.0005 (5) 0.0183 (6) −0.0076 (5)
O2 0.0699 (8) 0.0352 (6) 0.0617 (8) −0.0099 (5) 0.0179 (6) 0.0019 (5)

Geometric parameters (Å, º)

C1—N1 1.4657 (19) C10—H10B 0.9600
C1—C11 1.519 (2) C10—H10C 0.9600
C1—C2 1.525 (2) C11—C12 1.380 (2)
C1—H1 0.9800 C11—C16 1.425 (2)
C2—C3 1.380 (2) C12—O1 1.3653 (18)
C2—C8 1.380 (2) C12—C13 1.403 (2)
C3—C4 1.383 (2) C13—C14 1.358 (2)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.378 (3) C14—C15 1.412 (2)
C4—H4 0.9300 C14—H14 0.9300
C5—C7 1.377 (3) C15—C20 1.412 (2)
C5—C6 1.506 (3) C15—C16 1.423 (2)
C6—H6A 0.9600 C16—C17 1.422 (2)
C6—H6B 0.9600 C17—C18 1.362 (2)
C6—H6C 0.9600 C17—H17 0.9300
C7—C8 1.379 (3) C18—C19 1.398 (3)
C7—H7 0.9300 C18—H18 0.9300
C8—H8 0.9300 C19—C20 1.354 (3)
C9—O2 1.237 (2) C19—H19 0.9300
C9—N1 1.3325 (19) C20—H20 0.9300
C9—C10 1.498 (2) N1—H1A 0.8600
C10—H10A 0.9600 O1—H1B 0.8200
N1—C1—C11 110.12 (12) H10A—C10—H10C 109.5
N1—C1—C2 111.48 (12) H10B—C10—H10C 109.5
C11—C1—C2 113.60 (11) C12—C11—C16 118.85 (14)
N1—C1—H1 107.1 C12—C11—C1 118.83 (13)
C11—C1—H1 107.1 C16—C11—C1 122.32 (13)
C2—C1—H1 107.1 O1—C12—C11 117.61 (13)
C3—C2—C8 117.48 (15) O1—C12—C13 120.52 (14)
C3—C2—C1 121.80 (13) C11—C12—C13 121.84 (14)
C8—C2—C1 120.65 (14) C14—C13—C12 119.71 (15)
C2—C3—C4 121.09 (16) C14—C13—H13 120.1
C2—C3—H3 119.5 C12—C13—H13 120.1
C4—C3—H3 119.5 C13—C14—C15 121.33 (15)
C5—C4—C3 121.59 (17) C13—C14—H14 119.3
C5—C4—H4 119.2 C15—C14—H14 119.3
C3—C4—H4 119.2 C14—C15—C20 121.69 (16)
C7—C5—C4 116.94 (16) C14—C15—C16 118.98 (15)
C7—C5—C6 121.31 (18) C20—C15—C16 119.33 (16)
C4—C5—C6 121.74 (19) C17—C16—C15 117.02 (14)
C5—C6—H6A 109.5 C17—C16—C11 123.71 (14)
C5—C6—H6B 109.5 C15—C16—C11 119.26 (14)
H6A—C6—H6B 109.5 C18—C17—C16 121.57 (16)
C5—C6—H6C 109.5 C18—C17—H17 119.2
H6A—C6—H6C 109.5 C16—C17—H17 119.2
H6B—C6—H6C 109.5 C17—C18—C19 120.91 (18)
C5—C7—C8 121.93 (16) C17—C18—H18 119.5
C5—C7—H7 119.0 C19—C18—H18 119.5
C8—C7—H7 119.0 C20—C19—C18 119.33 (17)
C7—C8—C2 120.96 (16) C20—C19—H19 120.3
C7—C8—H8 119.5 C18—C19—H19 120.3
C2—C8—H8 119.5 C19—C20—C15 121.82 (18)
O2—C9—N1 121.89 (15) C19—C20—H20 119.1
O2—C9—C10 121.78 (14) C15—C20—H20 119.1
N1—C9—C10 116.33 (15) C9—N1—C1 124.00 (13)
C9—C10—H10A 109.5 C9—N1—H1A 118.0
C9—C10—H10B 109.5 C1—N1—H1A 118.0
H10A—C10—H10B 109.5 C12—O1—H1B 109.5
C9—C10—H10C 109.5
N1—C1—C2—C3 −148.79 (15) C11—C12—C13—C14 −1.0 (2)
C11—C1—C2—C3 −23.7 (2) C12—C13—C14—C15 −0.6 (2)
N1—C1—C2—C8 34.33 (19) C13—C14—C15—C20 −179.08 (16)
C11—C1—C2—C8 159.45 (14) C13—C14—C15—C16 1.2 (2)
C8—C2—C3—C4 −0.8 (3) C14—C15—C16—C17 −179.63 (15)
C1—C2—C3—C4 −177.72 (16) C20—C15—C16—C17 0.6 (2)
C2—C3—C4—C5 −0.1 (3) C14—C15—C16—C11 −0.2 (2)
C3—C4—C5—C7 0.5 (3) C20—C15—C16—C11 −179.93 (15)
C3—C4—C5—C6 179.83 (18) C12—C11—C16—C17 178.05 (14)
C4—C5—C7—C8 −0.1 (3) C1—C11—C16—C17 −1.4 (2)
C6—C5—C7—C8 −179.40 (18) C12—C11—C16—C15 −1.3 (2)
C5—C7—C8—C2 −0.8 (3) C1—C11—C16—C15 179.22 (13)
C3—C2—C8—C7 1.2 (2) C15—C16—C17—C18 −0.6 (2)
C1—C2—C8—C7 178.18 (15) C11—C16—C17—C18 −179.98 (16)
N1—C1—C11—C12 56.06 (17) C16—C17—C18—C19 0.1 (3)
C2—C1—C11—C12 −69.78 (17) C17—C18—C19—C20 0.2 (3)
N1—C1—C11—C16 −124.50 (14) C18—C19—C20—C15 −0.2 (3)
C2—C1—C11—C16 109.65 (15) C14—C15—C20—C19 179.99 (18)
C16—C11—C12—O1 179.95 (12) C16—C15—C20—C19 −0.3 (3)
C1—C11—C12—O1 −0.6 (2) O2—C9—N1—C1 3.4 (2)
C16—C11—C12—C13 2.0 (2) C10—C9—N1—C1 −175.71 (14)
C1—C11—C12—C13 −178.56 (13) C11—C1—N1—C9 125.81 (15)
O1—C12—C13—C14 −178.92 (14) C2—C1—N1—C9 −107.16 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1 0.86 2.20 2.7396 (16) 121
O1—H1B···O2i 0.82 1.85 2.6498 (15) 165

Symmetry code: (i) −x+3/2, y−1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7375).

References

  1. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Mosslemin, M. H., Arab-Salmanabadi, S. & Masoudi, M. (2007). Acta Cryst. E63, o444–o445.
  3. NizamMohideen, M., SubbiahPandi, A., Panneer Selvam, N. & Perumal, P. T. (2009). Acta Cryst. E65, o714–o715. [DOI] [PMC free article] [PubMed]
  4. Schleiss, M., Eickhoff, J., Auerochs, S., Leis, M., Abele, S., Rechter, S., Choi, S., Anderson, J., Scott, G., Rawlinson, W., Michel, D., Ensminger, S., Klebl, B., Stamminger, T. & Marschall, M. (2008). Antiviral Res. 79, 49–61. [DOI] [PubMed]
  5. Shaterian, H. R., Hosseinian, A. & Ghashang, M. (2008). Synth. Commun. 38, 3375–3389.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S2056989015004661/hb7375sup1.cif

e-71-0o235-sup1.cif (24.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004661/hb7375Isup2.hkl

e-71-0o235-Isup2.hkl (135.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004661/hb7375Isup3.cml

. DOI: 10.1107/S2056989015004661/hb7375fig1.tif

The mol­ecular configuration of (I). Displacement ellipsoids are drawn at the 30% probability level.

b . DOI: 10.1107/S2056989015004661/hb7375fig2.tif

The packing arrangement of mol­ecules viewed down the b axis.

CCDC reference: 959797

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES