Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 4;71(Pt 4):336–338. doi: 10.1107/S2056989015003850

Crystal structure of 5-{4′-[(2-{2-[2-(2-ammonio­eth­oxy)eth­oxy]eth­oxy}eth­yl)carbamo­yl]-4-meth­oxy-[1,1′-biphen­yl]-3-yl}-3-oxo-1,2,5-thia­diazo­lidin-2-ide 1,1-dioxide: a potential inhibitor of the enzyme protein tyrosine phosphatase 1B (PTP1B)

Kasi Viswanatharaju Ruddraraju a, Roman Hillebrand a, Charles L Barnes a, Kent S Gates a,*
PMCID: PMC4438830  PMID: 26029383

A variety of 5-aryl-1,2,5-thia­diazo­lidin-3-one 1,1-dioxides have been developed as inhibitors of the enzyme protein tyrosine phosphatase 1B (PTP1B). For the title compound, there is the expected twisted relationship between the plane of the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide ring and the aryl ring to which it is attached, although the dihedral angle of 62.87 (8)° is substanti­ally less than that seen in certain protein–ligand structures.

Keywords: crystal structure; PTP1B; inhibitor; 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide; hydrogen bonding

Abstract

The title compound, C24H32N4O8S, (I), crystallizes as a zwitterion. The terminal amine N atom of the [(2-{2-[2-(2-ammonio­eth­oxy)eth­oxy]eth­oxy}eth­yl)carbamo­yl] side chain is protonated, while the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide N atom is deprotonated. The side chain is turned over on itself with an intra­molecular N—H⋯O hydrogen bond. The 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide ring has an envelope conformation with the aryl-substituted N atom as the flap. Its mean plane is inclined by 62.87 (8)° to the aryl ring to which it is attached, while the aryl rings of the biphenyl unit are inclined to one another by 20.81 (8)°. In the crystal, mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming slabs lying parallel to (010). Within the slabs there are C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π inter­actions present.

Chemical context  

A variety of 5-aryl-1,2,5-thia­diazo­lidin-3-one 1,1-dioxides have been developed as inhibitors of the enzyme protein tyrosine phosphatase 1B (PTP1B) (Combs, 2010). In this capacity, the 5-aryl-1,2,5-thia­diazo­lidin-3-one 1,1-dioxide core serves as a structural mimic of the phosphoryl tyrosine unit that is present in the endogenous substrates of the enzyme. The parent compound, 5-phenyl-1,2,5-thia­diazo­lidin-3-one 1,1-dioxide 1 (Fig. 1), is a rather weak inhibitor of PTP1B, displaying a Ki value of approximately 2 mM (Black et al., 2005). Docking studies predicted that this compound must bind to the enzyme active site in a conformation where the planes of the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide and aryl rings are twisted, rather than co-planar (Black et al., 2005). It was further anti­cipated that installation of substituents such as methyl or meth­oxy groups on the aryl ring at the position ortho to the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide substituent would bias the conformation of the free ligand toward the twisted form, thus serving to ‘pre-organize’ the compounds for binding to the enzyme active site (Black et al., 2005). Indeed, compounds 2 and 3 (Ki values of 100 and 70 µM, respectively) display substanti­ally higher affinities for PTP1B than does 1 (Black et al., 2005). X-ray crystal structure analysis confirmed the twisted conformation of the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide and aryl ring systems in the protein–ligand co-crystal structure of 4 bound to PTP1B (Black et al., 2005). The planes of these two rings are nearly perpendicular in the protein–ligand complex (dihedral angle of ca 88°, see: pdb code 2bgd). The ability of methyl and meth­oxy substit­uents to favor the twisted relationship between the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide and aryl rings in compounds like 2 and 3 has been studied computationally and the twisted relationship of these rings has been experimentally observed in the protein–ligand co-crystal structure of 4 with the enzyme PTP1B. However, to the best of our knowledge no crystal structures of free 5-aryl-1,2,5-thiadiazolidin-3-one 1,1-dioxides have been published. Herein, we describe the crystal structure of the title compound (I), shown in the scheme below, a derivative of compound 4.graphic file with name e-71-00336-scheme1.jpg

Figure 1.

Figure 1

The parent compound 1 and related compounds.

Structural commentary  

The title compound (I), crystallized as a zwitterion (Fig. 2). The terminal amine N atom, N4, is protonated and the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide nitro­gen atom, N1, is deprotonated. The [(2-{2-[2-(2-ammonio­eth­oxy)eth­oxy]eth­oxy}eth­yl)carbamo­yl] side chain is folded over on itself with an intra­molecular N—H⋯O hydrogen bond involving the ammonium group, N4, and an ether O atom, O7 (Table 1 and Fig. 2). The aryl rings of the biphenyl unit (C3–C8 and C9–C14) are inclined to one another by 20.81 (8)°. The 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide ring (S1/N1/N2/C1/C2) has a shallow envelope conformation with nitro­gen atom N2 as the flap. Its mean plane is inclined to the benzene ring to which it is attached (C3–C8) by 62.87 (8)°. This twisted relationship between the planes of the 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide and aryl rings is substanti­ally less than that seen in the protein–ligand co-crystal structure of 4 bound to PTP1B (Black et al., 2005), where these two rings are nearly perpendicular to one another with a dihedral angle of ca 88° (see: Protein Data Bank entry: code 2bgd).

Figure 2.

Figure 2

A view of the mol­ecular structure of the title compound (I), showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The intra­molecular N—H⋯O hydrogen bond is shown as a dashed line (see Table 1 for details) and C-bound H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of the C3C8 ring.

DHA DH HA D A DHA
N3H1N3O3i 0.82(2) 2.22(3) 3.012(2) 161(2)
N4H1N4O1ii 0.93(3) 2.29(3) 3.010(2) 133(2)
N4H1N4O7 0.93(3) 2.49(3) 3.106(2) 124(2)
N4H2N4N1i 1.03(3) 1.82(3) 2.821(2) 163(2)
N4H3N4O6iii 0.98(3) 1.99(3) 2.942(2) 162(3)
C2H2BO3iv 0.99 2.30 3.267(2) 166
C18H18AN1i 0.99 2.57 3.545(2) 168
C22H22AO8ii 0.99 2.63 3.343(3) 129
C24H24AO5iii 0.99 2.58 3.298(2) 129
C21H21B Cg1ii 0.99 2.70 3.555(2) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal of (I), mol­ecules are linked by N—H⋯O and N—H⋯N hydrogen bonds, forming slabs lying parallel to the ac plane (Fig. 3 and Table 1). Within the slabs there are also C—H⋯O and C—H⋯N hydrogen bonds and C—H⋯π inter­actions present reinforcing the two-dimensional structure (Table 1).

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title compound. The N—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1 for details) and C-bound H atoms have been omitted for clarity.

Database survey  

A search of the Cambridge Structural Database (Version 5.36; Groom & Allen, 2014) revealed no crystal structures of free 5-aryl-1,2,5-thia­diazo­lidin-3-one 1,1-dioxides. It did reveal the presence of five 1,2,5-thia­diazo­lidin-3-one 1,1-dioxide compounds substituted at the N atom in the 2-position. In the majority of these compounds, the five-membered 1,2,5-thia­diazo­lidine rings also have envelope conformations, with the N atom in the 5-position, as in compound (I), as the flap.

Synthesis and crystallization  

The title compound was synthesized by amide bond formation between tert-butyl (2-{2-[2-(2-amino­eth­oxy)eth­oxy]eth­oxy}eth­yl)carbamate and 3′-(1,1-dioxido-4-oxo-1,2,5-thia­diazo­lidin-2-yl)-4′-meth­oxy-[1,1′-biphen­yl]-4-carb­oxy­lic acid via (benzotriazol-1-yl­oxy)tris­(di­methyl­amino)­phospho­nium hexa­fluoro­phosphate. The precursors were synthesized according to published procedures (Black et al., 2005; Schwabacher et al., 1998). Full synthetic details will be published elsewhere. Single crystals of the title compound (I) were obtained by slow evaporation of a solution of (I) in methanol.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding: C—H = 0.95–0.99 Å with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C24H32N4O8S
M r 536.59
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c () 7.3483(2), 12.2233(3), 13.9847(4)
, , () 95.323(1), 90.281(2), 99.802(1)
V (3) 1232.16(6)
Z 2
Radiation type Cu K
(mm1) 1.67
Crystal size (mm) 0.15 0.15 0.02
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.89, 0.97
No. of measured, independent and observed [I > 2(I)] reflections 15014, 4539, 4292
R int 0.017
(sin /)max (1) 0.617
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.039, 0.111, 1.03
No. of reflections 4539
No. of parameters 351
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.56, 0.33

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2015) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015003850/su5087sup1.cif

e-71-00336-sup1.cif (460KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003850/su5087Isup2.hkl

e-71-00336-Isup2.hkl (248.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003850/su5087Isup3.cml

CCDC reference: 1051176

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the National Institutes of Health (CA 100757) for partial support of this work.

supplementary crystallographic information

Crystal data

C24H32N4O8S Z = 2
Mr = 536.59 F(000) = 568
Triclinic, P1 Dx = 1.446 Mg m3
a = 7.3483 (2) Å Cu Kα radiation, λ = 1.54178 Å
b = 12.2233 (3) Å Cell parameters from 8971 reflections
c = 13.9847 (4) Å θ = 3.2–71.7°
α = 95.323 (1)° µ = 1.67 mm1
β = 90.281 (2)° T = 100 K
γ = 99.802 (1)° Plate, colourless
V = 1232.16 (6) Å3 0.15 × 0.15 × 0.02 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4292 reflections with I > 2σ(I)
Radiation source: Incoatec microfocus Cu tube Rint = 0.017
ω and phi scans θmax = 72.1°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −8→7
Tmin = 0.89, Tmax = 0.97 k = −15→15
15014 measured reflections l = −16→16
4539 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0647P)2 + 0.8661P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
4539 reflections Δρmax = 0.56 e Å3
351 parameters Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Maximum electron density of 0.56 e is in the vicinity of C21 in the extended chain and may represent very minor disorder.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.52151 (5) 0.68948 (3) 0.09933 (3) 0.01945 (13)
O1 0.65998 (19) 0.61868 (11) 0.09811 (10) 0.0305 (3)
O2 0.35802 (18) 0.64660 (11) 0.14874 (10) 0.0317 (3)
O3 0.52042 (18) 0.86988 (10) −0.09372 (9) 0.0266 (3)
O4 0.97456 (17) 0.88464 (10) 0.17601 (9) 0.0242 (3)
O5 −0.07338 (17) 0.81837 (11) 0.69084 (9) 0.0296 (3)
O6 −0.04449 (18) 0.63027 (11) 0.85611 (9) 0.0279 (3)
O7 0.16486 (19) 0.49974 (10) 0.73225 (10) 0.0305 (3)
O8 0.5123 (2) 0.49283 (11) 0.63370 (10) 0.0359 (3)
N1 0.4761 (2) 0.71885 (12) −0.00657 (10) 0.0239 (3)
N2 0.6032 (2) 0.81729 (11) 0.14491 (10) 0.0221 (3)
N3 0.1468 (2) 0.84118 (12) 0.80862 (11) 0.0232 (3)
H1N3 0.256 (3) 0.8427 (18) 0.8228 (16) 0.027 (6)*
N4 0.5520 (3) 0.58747 (14) 0.82658 (12) 0.0291 (3)
H1N4 0.474 (4) 0.520 (3) 0.812 (2) 0.052 (8)*
H2N4 0.510 (3) 0.621 (2) 0.8909 (19) 0.041 (6)*
H3N4 0.685 (5) 0.585 (2) 0.831 (2) 0.058 (8)*
C1 0.5371 (2) 0.82684 (14) −0.01819 (12) 0.0206 (3)
C2 0.6324 (2) 0.89346 (13) 0.07032 (11) 0.0198 (3)
H2A 0.7659 0.9167 0.0595 0.024*
H2B 0.5769 0.9607 0.0878 0.024*
C3 0.6802 (2) 0.83838 (13) 0.23985 (12) 0.0187 (3)
C4 0.8705 (2) 0.87285 (13) 0.25612 (12) 0.0204 (3)
C5 0.9381 (2) 0.89174 (14) 0.35051 (13) 0.0229 (4)
H5 1.0668 0.9150 0.3628 0.028*
C6 0.8188 (2) 0.87689 (14) 0.42708 (12) 0.0224 (3)
H6 0.8679 0.8896 0.4909 0.027*
C7 0.6289 (2) 0.84384 (13) 0.41224 (12) 0.0193 (3)
C8 0.5638 (2) 0.82427 (13) 0.31696 (12) 0.0197 (3)
H8 0.4352 0.8005 0.3047 0.024*
C9 0.4964 (2) 0.83521 (13) 0.49259 (12) 0.0195 (3)
C10 0.5441 (2) 0.88953 (14) 0.58384 (12) 0.0223 (3)
H10 0.6661 0.9293 0.5958 0.027*
C11 0.4178 (2) 0.88685 (14) 0.65740 (12) 0.0230 (4)
H11 0.4549 0.9235 0.7190 0.028*
C12 0.2375 (2) 0.83098 (13) 0.64171 (12) 0.0204 (3)
C13 0.1889 (3) 0.77461 (16) 0.55146 (13) 0.0282 (4)
H13 0.0665 0.7354 0.5396 0.034*
C14 0.3165 (3) 0.77503 (16) 0.47882 (13) 0.0281 (4)
H14 0.2816 0.7338 0.4187 0.034*
C15 1.1677 (3) 0.92460 (19) 0.18946 (15) 0.0334 (4)
H15A 1.1870 0.9942 0.2319 0.050*
H15B 1.2233 0.9383 0.1272 0.050*
H15C 1.2255 0.8687 0.2185 0.050*
C16 0.0893 (2) 0.82919 (14) 0.71575 (13) 0.0226 (4)
C17 0.0153 (3) 0.82894 (15) 0.88628 (13) 0.0270 (4)
H17A −0.1093 0.8332 0.8612 0.032*
H17B 0.0500 0.8914 0.9369 0.032*
C18 0.0089 (3) 0.71993 (16) 0.92983 (13) 0.0273 (4)
H18A 0.1319 0.7157 0.9570 0.033*
H18B −0.0813 0.7146 0.9822 0.033*
C19 0.0108 (3) 0.52875 (16) 0.87786 (14) 0.0294 (4)
H19A −0.0770 0.4912 0.9229 0.035*
H19B 0.1350 0.5449 0.9090 0.035*
C20 0.0145 (3) 0.45443 (15) 0.78734 (15) 0.0303 (4)
H20A 0.0284 0.3787 0.8026 0.036*
H20B −0.1026 0.4487 0.7505 0.036*
C21 0.1833 (3) 0.42988 (19) 0.64803 (17) 0.0431 (5)
H21A 0.0660 0.4151 0.6101 0.052*
H21B 0.2117 0.3577 0.6651 0.052*
C22 0.3357 (4) 0.4859 (2) 0.58984 (17) 0.0510 (6)
H22A 0.3335 0.4440 0.5256 0.061*
H22B 0.3141 0.5621 0.5807 0.061*
C23 0.6108 (3) 0.60309 (16) 0.65657 (15) 0.0344 (4)
H23A 0.5972 0.6482 0.6026 0.041*
H23B 0.7437 0.6005 0.6651 0.041*
C24 0.5416 (3) 0.65799 (15) 0.74680 (14) 0.0297 (4)
H24A 0.6178 0.7324 0.7631 0.036*
H24B 0.4123 0.6680 0.7366 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0198 (2) 0.0170 (2) 0.0207 (2) −0.00143 (15) −0.00151 (15) 0.00555 (14)
O1 0.0350 (8) 0.0252 (6) 0.0340 (7) 0.0097 (5) 0.0005 (6) 0.0085 (5)
O2 0.0250 (7) 0.0316 (7) 0.0353 (7) −0.0080 (5) 0.0031 (6) 0.0098 (6)
O3 0.0334 (7) 0.0249 (6) 0.0221 (6) 0.0042 (5) −0.0041 (5) 0.0077 (5)
O4 0.0183 (6) 0.0312 (6) 0.0231 (6) 0.0026 (5) 0.0036 (5) 0.0060 (5)
O5 0.0197 (7) 0.0391 (7) 0.0312 (7) 0.0057 (5) 0.0018 (5) 0.0076 (6)
O6 0.0264 (7) 0.0275 (6) 0.0308 (7) 0.0055 (5) 0.0002 (5) 0.0065 (5)
O7 0.0299 (7) 0.0246 (6) 0.0351 (7) 0.0004 (5) 0.0045 (6) 0.0007 (5)
O8 0.0422 (8) 0.0267 (7) 0.0368 (7) 0.0029 (6) 0.0066 (6) −0.0014 (6)
N1 0.0289 (8) 0.0204 (7) 0.0217 (7) 0.0008 (6) −0.0043 (6) 0.0044 (6)
N2 0.0275 (8) 0.0182 (7) 0.0188 (7) −0.0036 (5) −0.0031 (6) 0.0064 (5)
N3 0.0194 (8) 0.0262 (8) 0.0237 (7) 0.0021 (6) 0.0040 (6) 0.0032 (6)
N4 0.0342 (10) 0.0243 (8) 0.0300 (8) 0.0068 (7) −0.0004 (7) 0.0049 (6)
C1 0.0199 (8) 0.0219 (8) 0.0206 (8) 0.0042 (6) −0.0002 (6) 0.0039 (6)
C2 0.0218 (8) 0.0176 (7) 0.0201 (8) 0.0006 (6) −0.0006 (6) 0.0069 (6)
C3 0.0212 (8) 0.0158 (7) 0.0188 (8) 0.0015 (6) −0.0018 (6) 0.0042 (6)
C4 0.0214 (9) 0.0180 (7) 0.0226 (8) 0.0035 (6) 0.0029 (7) 0.0049 (6)
C5 0.0166 (8) 0.0252 (8) 0.0263 (9) 0.0009 (6) −0.0020 (7) 0.0035 (7)
C6 0.0219 (9) 0.0237 (8) 0.0212 (8) 0.0023 (6) −0.0033 (7) 0.0026 (6)
C7 0.0206 (9) 0.0174 (7) 0.0205 (8) 0.0031 (6) 0.0002 (6) 0.0050 (6)
C8 0.0176 (8) 0.0189 (8) 0.0225 (8) 0.0015 (6) −0.0012 (6) 0.0051 (6)
C9 0.0202 (9) 0.0188 (8) 0.0207 (8) 0.0039 (6) −0.0003 (6) 0.0065 (6)
C10 0.0200 (9) 0.0226 (8) 0.0230 (8) −0.0006 (6) −0.0004 (7) 0.0031 (6)
C11 0.0266 (9) 0.0205 (8) 0.0210 (8) 0.0014 (6) 0.0001 (7) 0.0019 (6)
C12 0.0216 (9) 0.0201 (8) 0.0212 (8) 0.0052 (6) 0.0012 (6) 0.0072 (6)
C13 0.0204 (9) 0.0373 (10) 0.0251 (9) −0.0017 (7) −0.0024 (7) 0.0052 (7)
C14 0.0251 (10) 0.0365 (10) 0.0202 (8) −0.0020 (7) −0.0017 (7) 0.0019 (7)
C15 0.0175 (9) 0.0517 (12) 0.0328 (10) 0.0062 (8) 0.0031 (8) 0.0133 (9)
C16 0.0229 (10) 0.0196 (8) 0.0258 (9) 0.0033 (6) 0.0030 (7) 0.0053 (6)
C17 0.0255 (9) 0.0293 (9) 0.0252 (9) 0.0032 (7) 0.0081 (7) 0.0006 (7)
C18 0.0241 (9) 0.0340 (10) 0.0231 (8) 0.0022 (7) 0.0040 (7) 0.0038 (7)
C19 0.0231 (9) 0.0292 (9) 0.0367 (10) 0.0016 (7) −0.0006 (8) 0.0131 (8)
C20 0.0226 (9) 0.0249 (9) 0.0438 (11) 0.0018 (7) 0.0007 (8) 0.0094 (8)
C21 0.0386 (12) 0.0417 (12) 0.0427 (12) −0.0026 (9) 0.0010 (10) −0.0108 (10)
C22 0.0471 (14) 0.0703 (17) 0.0295 (11) −0.0007 (12) 0.0019 (10) −0.0079 (10)
C23 0.0421 (12) 0.0263 (9) 0.0336 (10) 0.0014 (8) 0.0054 (9) 0.0049 (8)
C24 0.0369 (11) 0.0225 (9) 0.0296 (9) 0.0024 (7) 0.0016 (8) 0.0065 (7)

Geometric parameters (Å, º)

S1—O2 1.4341 (13) C8—H8 0.9500
S1—O1 1.4429 (13) C9—C10 1.397 (2)
S1—N1 1.6025 (14) C9—C14 1.402 (3)
S1—N2 1.6429 (14) C10—C11 1.388 (2)
O3—C1 1.237 (2) C10—H10 0.9500
O4—C4 1.365 (2) C11—C12 1.390 (2)
O4—C15 1.425 (2) C11—H11 0.9500
O5—C16 1.226 (2) C12—C13 1.395 (3)
O6—C19 1.428 (2) C12—C16 1.505 (2)
O6—C18 1.435 (2) C13—C14 1.386 (3)
O7—C21 1.410 (2) C13—H13 0.9500
O7—C20 1.414 (2) C14—H14 0.9500
O8—C22 1.419 (3) C15—H15A 0.9800
O8—C23 1.424 (2) C15—H15B 0.9800
N1—C1 1.345 (2) C15—H15C 0.9800
N2—C3 1.425 (2) C17—C18 1.509 (3)
N2—C2 1.454 (2) C17—H17A 0.9900
N3—C16 1.351 (2) C17—H17B 0.9900
N3—C17 1.459 (2) C18—H18A 0.9900
N3—H1N3 0.82 (2) C18—H18B 0.9900
N4—C24 1.481 (2) C19—C20 1.491 (3)
N4—H1N4 0.93 (3) C19—H19A 0.9900
N4—H2N4 1.03 (3) C19—H19B 0.9900
N4—H3N4 0.98 (3) C20—H20A 0.9900
C1—C2 1.515 (2) C20—H20B 0.9900
C2—H2A 0.9900 C21—C22 1.496 (3)
C2—H2B 0.9900 C21—H21A 0.9900
C3—C8 1.385 (2) C21—H21B 0.9900
C3—C4 1.401 (2) C22—H22A 0.9900
C4—C5 1.393 (2) C22—H22B 0.9900
C5—C6 1.393 (2) C23—C24 1.505 (3)
C5—H5 0.9500 C23—H23A 0.9900
C6—C7 1.394 (2) C23—H23B 0.9900
C6—H6 0.9500 C24—H24A 0.9900
C7—C8 1.399 (2) C24—H24B 0.9900
C7—C9 1.490 (2)
O2—S1—O1 113.21 (8) C14—C13—H13 119.5
O2—S1—N1 112.24 (8) C12—C13—H13 119.5
O1—S1—N1 111.49 (8) C13—C14—C9 121.12 (17)
O2—S1—N2 109.69 (8) C13—C14—H14 119.4
O1—S1—N2 111.90 (8) C9—C14—H14 119.4
N1—S1—N2 97.26 (7) O4—C15—H15A 109.5
C4—O4—C15 117.63 (14) O4—C15—H15B 109.5
C19—O6—C18 112.83 (14) H15A—C15—H15B 109.5
C21—O7—C20 111.72 (15) O4—C15—H15C 109.5
C22—O8—C23 115.10 (18) H15A—C15—H15C 109.5
C1—N1—S1 111.85 (12) H15B—C15—H15C 109.5
C3—N2—C2 125.75 (13) O5—C16—N3 123.27 (16)
C3—N2—S1 120.81 (11) O5—C16—C12 120.31 (16)
C2—N2—S1 111.22 (11) N3—C16—C12 116.41 (16)
C16—N3—C17 121.27 (16) N3—C17—C18 112.19 (15)
C16—N3—H1N3 120.7 (16) N3—C17—H17A 109.2
C17—N3—H1N3 116.9 (15) C18—C17—H17A 109.2
C24—N4—H1N4 108.5 (17) N3—C17—H17B 109.2
C24—N4—H2N4 113.3 (14) C18—C17—H17B 109.2
H1N4—N4—H2N4 107 (2) H17A—C17—H17B 107.9
C24—N4—H3N4 102.2 (17) O6—C18—C17 108.55 (14)
H1N4—N4—H3N4 117 (2) O6—C18—H18A 110.0
H2N4—N4—H3N4 109 (2) C17—C18—H18A 110.0
O3—C1—N1 124.30 (16) O6—C18—H18B 110.0
O3—C1—C2 121.76 (15) C17—C18—H18B 110.0
N1—C1—C2 113.94 (14) H18A—C18—H18B 108.4
N2—C2—C1 104.42 (13) O6—C19—C20 109.31 (15)
N2—C2—H2A 110.9 O6—C19—H19A 109.8
C1—C2—H2A 110.9 C20—C19—H19A 109.8
N2—C2—H2B 110.9 O6—C19—H19B 109.8
C1—C2—H2B 110.9 C20—C19—H19B 109.8
H2A—C2—H2B 108.9 H19A—C19—H19B 108.3
C8—C3—C4 119.87 (15) O7—C20—C19 108.74 (15)
C8—C3—N2 118.94 (15) O7—C20—H20A 109.9
C4—C3—N2 121.19 (15) C19—C20—H20A 109.9
O4—C4—C5 125.49 (16) O7—C20—H20B 109.9
O4—C4—C3 115.86 (15) C19—C20—H20B 109.9
C5—C4—C3 118.65 (15) H20A—C20—H20B 108.3
C6—C5—C4 120.62 (16) O7—C21—C22 109.08 (18)
C6—C5—H5 119.7 O7—C21—H21A 109.9
C4—C5—H5 119.7 C22—C21—H21A 109.9
C5—C6—C7 121.50 (16) O7—C21—H21B 109.9
C5—C6—H6 119.3 C22—C21—H21B 109.9
C7—C6—H6 119.3 H21A—C21—H21B 108.3
C6—C7—C8 117.06 (15) O8—C22—C21 112.5 (2)
C6—C7—C9 122.74 (15) O8—C22—H22A 109.1
C8—C7—C9 120.11 (15) C21—C22—H22A 109.1
C3—C8—C7 122.29 (16) O8—C22—H22B 109.1
C3—C8—H8 118.9 C21—C22—H22B 109.1
C7—C8—H8 118.9 H22A—C22—H22B 107.8
C10—C9—C14 117.26 (16) O8—C23—C24 111.71 (16)
C10—C9—C7 121.45 (15) O8—C23—H23A 109.3
C14—C9—C7 121.26 (15) C24—C23—H23A 109.3
C11—C10—C9 121.63 (16) O8—C23—H23B 109.3
C11—C10—H10 119.2 C24—C23—H23B 109.3
C9—C10—H10 119.2 H23A—C23—H23B 107.9
C10—C11—C12 120.59 (16) N4—C24—C23 109.41 (16)
C10—C11—H11 119.7 N4—C24—H24A 109.8
C12—C11—H11 119.7 C23—C24—H24A 109.8
C11—C12—C13 118.37 (16) N4—C24—H24B 109.8
C11—C12—C16 123.98 (16) C23—C24—H24B 109.8
C13—C12—C16 117.63 (16) H24A—C24—H24B 108.2
C14—C13—C12 120.93 (17)
O2—S1—N1—C1 121.10 (13) C9—C7—C8—C3 175.66 (14)
O1—S1—N1—C1 −110.68 (13) C6—C7—C9—C10 19.1 (2)
N2—S1—N1—C1 6.33 (14) C8—C7—C9—C10 −157.39 (16)
O2—S1—N2—C3 68.27 (15) C6—C7—C9—C14 −162.95 (16)
O1—S1—N2—C3 −58.24 (15) C8—C7—C9—C14 20.6 (2)
N1—S1—N2—C3 −174.93 (14) C14—C9—C10—C11 −1.7 (3)
O2—S1—N2—C2 −127.73 (12) C7—C9—C10—C11 176.34 (15)
O1—S1—N2—C2 105.76 (13) C9—C10—C11—C12 −1.1 (3)
N1—S1—N2—C2 −10.94 (13) C10—C11—C12—C13 2.2 (2)
S1—N1—C1—O3 179.31 (14) C10—C11—C12—C16 −176.56 (15)
S1—N1—C1—C2 0.00 (19) C11—C12—C13—C14 −0.6 (3)
C3—N2—C2—C1 174.45 (15) C16—C12—C13—C14 178.28 (17)
S1—N2—C2—C1 11.42 (16) C12—C13—C14—C9 −2.3 (3)
O3—C1—C2—N2 173.35 (16) C10—C9—C14—C13 3.4 (3)
N1—C1—C2—N2 −7.3 (2) C7—C9—C14—C13 −174.70 (17)
C2—N2—C3—C8 127.60 (17) C17—N3—C16—O5 7.3 (3)
S1—N2—C3—C8 −70.86 (19) C17—N3—C16—C12 −173.40 (14)
C2—N2—C3—C4 −52.4 (2) C11—C12—C16—O5 151.68 (17)
S1—N2—C3—C4 109.13 (16) C13—C12—C16—O5 −27.1 (2)
C15—O4—C4—C5 −3.1 (2) C11—C12—C16—N3 −27.6 (2)
C15—O4—C4—C3 177.13 (15) C13—C12—C16—N3 153.56 (16)
C8—C3—C4—O4 −179.96 (14) C16—N3—C17—C18 105.25 (19)
N2—C3—C4—O4 0.1 (2) C19—O6—C18—C17 157.75 (15)
C8—C3—C4—C5 0.3 (2) N3—C17—C18—O6 −59.8 (2)
N2—C3—C4—C5 −179.71 (15) C18—O6—C19—C20 −159.42 (15)
O4—C4—C5—C6 −179.90 (15) C21—O7—C20—C19 176.42 (17)
C3—C4—C5—C6 −0.2 (2) O6—C19—C20—O7 70.69 (19)
C4—C5—C6—C7 −0.6 (3) C20—O7—C21—C22 176.10 (19)
C5—C6—C7—C8 1.1 (2) C23—O8—C22—C21 −119.2 (2)
C5—C6—C7—C9 −175.45 (15) O7—C21—C22—O8 69.3 (3)
C4—C3—C8—C7 0.3 (2) C22—O8—C23—C24 78.5 (2)
N2—C3—C8—C7 −179.69 (14) O8—C23—C24—N4 55.8 (2)
C6—C7—C8—C3 −1.0 (2)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C3–C8 ring.

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O3i 0.82 (2) 2.22 (3) 3.012 (2) 161 (2)
N4—H1N4···O1ii 0.93 (3) 2.29 (3) 3.010 (2) 133 (2)
N4—H1N4···O7 0.93 (3) 2.49 (3) 3.106 (2) 124 (2)
N4—H2N4···N1i 1.03 (3) 1.82 (3) 2.821 (2) 163 (2)
N4—H3N4···O6iii 0.98 (3) 1.99 (3) 2.942 (2) 162 (3)
C2—H2B···O3iv 0.99 2.30 3.267 (2) 166
C18—H18A···N1i 0.99 2.57 3.545 (2) 168
C22—H22A···O8ii 0.99 2.63 3.343 (3) 129
C24—H24A···O5iii 0.99 2.58 3.298 (2) 129
C21—H21B···Cg1ii 0.99 2.70 3.555 (2) 165

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z; (iv) −x+1, −y+2, −z.

References

  1. Black, E., Breed, J., Breeze, A. L., Embrey, K., Garcia, R., Gero, T. W., Godfrey, L., Kenny, P. W., Morley, A. D., Minshull, C. A., Pannifer, A. D., Read, J., Rees, A., Russell, D. J., Toader, D. & Tucker, J. (2005). Bioorg. Med. Chem. Lett. 15, 2503–2507. [DOI] [PubMed]
  2. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Combs, A. P. (2010). J. Med. Chem. 53, 2333–2344. [DOI] [PubMed]
  4. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Schwabacher, A. W., Lane, J. W., Schiesher, M. W., Leigh, K. M. & Johnson, C. W. (1998). J. Org. Chem. 63, 1727–1729.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989015003850/su5087sup1.cif

e-71-00336-sup1.cif (460KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015003850/su5087Isup2.hkl

e-71-00336-Isup2.hkl (248.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015003850/su5087Isup3.cml

CCDC reference: 1051176

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES