Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 11;71(Pt 4):o231–o232. doi: 10.1107/S2056989015004429

Crystal structure of 2-{[1-(4-bromo­benz­yl)-1H-1,2,3-triazol-4-yl]meth­oxy}naph­thalene-1,4-dione

Rajamani Raja a, Subramani Kandhasamy b, Paramasivam T Perumal b, A SubbiahPandi a,*
PMCID: PMC4438838  PMID: 26029429

Abstract

In the title compound, C20H14BrN3O3, the benzene ring makes dihedral angles of 71.30 (11) and 68.95 (14)° with the naphthalene ring system and the triazole ring, respectively. The latter two ring systems are coplanar, with a dihedral angle of 2.92 (12)°. The O atoms deviate from the naphthalene ring system by 0.029 (2) and −0.051 (2) Å. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming ribbons parallel to (10-1). The ribbons are linked via C—H⋯O and π–π stacking inter­actions [centroid–centroid distance = 3.4451 (14) Å], forming slabs parallel to the bc plane.

Keywords: crystal structure, triazole, naphthalene, hydrogen bonds

Related literature  

For some general background and examples of the pharmacological and biological activity of triazole and its derivatives, see, for example: Abu-Orabi et al. (1989); Demirbaş et al. (2002); Kritsanida et al. (2002). For the biological activity of naphthalene compounds, see, for example: Upadhayaya et al. (2010); Rokade & Sayyed (2009).graphic file with name e-71-0o231-scheme1.jpg

Experimental  

Crystal data  

  • C20H14BrN3O3

  • M r = 424.25

  • Monoclinic, Inline graphic

  • a = 16.4383 (5) Å

  • b = 13.1684 (4) Å

  • c = 8.2255 (2) Å

  • β = 90.827 (1)°

  • V = 1780.36 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.34 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.593, T max = 0.652

  • 17010 measured reflections

  • 4415 independent reflections

  • 2887 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.119

  • S = 1.01

  • 4415 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.93 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015004429/su5090sup1.cif

e-71-0o231-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004429/su5090Isup2.hkl

e-71-0o231-Isup2.hkl (216.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004429/su5090Isup3.cml

. DOI: 10.1107/S2056989015004429/su5090fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

c . DOI: 10.1107/S2056989015004429/su5090fig2.tif

A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

c . DOI: 10.1107/S2056989015004429/su5090fig3.tif

A perspective view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these inter­actions have been omitted for clarity).

CCDC reference: 1052111

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C1H1N1i 0.93 2.57 3.251(3) 131
C13H13O2i 0.93 2.53 3.277(3) 138
C11H11AO2ii 0.97 2.46 3.425(3) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Dr Jagan, Department of Chemistry, IIT, Chennai, India, for the data collection.

supplementary crystallographic information

S1. Comment

Triazoles and triazole derivatives play an important role in pharmaceuticals, agrochemicals, dyes, photographic materials, and in corrosion inhibition and have many biological applications (Abu-Orabi et al., 1989; Demirbaş et al., 2002; Kritsanida et al., 2002. Naphthalene derivatives has been identified as new range of potent antimicrobials effective against wide range of human pathogens and have diverse and interesting antibiotic properties with minimum toxicity (Rokade & Sayyed, 2009; Upadhayaya et al. 2010).

The molecular structure of the title compound is shown in Fig. 1. The benzene ring (C15-C20) makes dihedral angles of 71.30 (11) and 68.95 (14) ° with the naphthalene ring system and the triazole ring, respectively. The latter two rings are coplanar with a dihedral angle of 2.92 (12) °. Atoms O1 and O2 deviate from the naphthalene ring by 0.029 (2) and -0.051 (2) Å, respectively. Atom Br1 deviates from the benzene ring to which it is attached by -0.028 (1) Å

In the crystal, molecules are linked by C-H···O and C-H···N hydrogen bonds forming ribbons parallel to (101); see Table 1 and Fig. 2. The ribbons are linked by C-H···O hydrogen bonds and π–π stacking interactions [Cg2···Cg3i = 3.4451 (14) Å; Cg2 and Cg3 are the centroids of rings naphthalene rings C1-C5/C10 and C5-C10, respectively; symmetry code: (i) x, -y+1/2, z-1/2], forming slabs parallel to the bc plane (Table 1 and Fig. 3).

S2. Experimental

The triazole appended lawsone was synthesized in a two step procedure. To a solution of lawsone (0.87 g, 5 mmol) in DMF (20 ml) was added potassium carbonate (1.04 g, 7.5 mmol) and the solution was stirred at room temperature. Propargyl bromide (0.7 mL, 7.5 mmol) was added drop wise and the resulting mixture was allowed to stir overnight. After completion of the reaction, in the mixture was partitioned between DCM and water, and the DCM layer was collected. The aqueous layer was extracted three times with DCM. The combined organic extracts were dried over anhydrous Na2SO4, and concentrated under vacuum to obtain the desired propargyllated lawsone that was later converted to a triazole using click chemistry. Propargyllated lawsone (0.636 g, 3 mmol) was dissolved in 1:1 THF / H2O mixture and triethyl amine (0.7 ml, 5 mmol), sodium azide (0.26 g, 4 mmol), 4-bromobenzyl bromide (0.68 mL, 4 mmol) and cuprous iodide (catalytic amount) were added to this solution. The resulting mixture was allowed to stir overnight at room temperature. Upon completion of the reaction, the mixture was filtered, extract with ethyl acetate, concentrated under vacuum and then subjected to column chromatography to obtain the desired product. The overall yield was 0.61 g (60%). Colourless block-like crystals were obtained on slow evaporation of the solvent.

S3. Refinement

The C-bound H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and allowed to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Fig. 3.

Fig. 3.

A perspective view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).

Crystal data

C20H14BrN3O3 F(000) = 856
Mr = 424.25 Dx = 1.583 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2887 reflections
a = 16.4383 (5) Å θ = 1.2–28.3°
b = 13.1684 (4) Å µ = 2.34 mm1
c = 8.2255 (2) Å T = 293 K
β = 90.827 (1)° Block, colourless
V = 1780.36 (9) Å3 0.25 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 4415 independent reflections
Radiation source: fine-focus sealed tube 2887 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
ω and φ scans θmax = 28.3°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −21→20
Tmin = 0.593, Tmax = 0.652 k = −16→17
17010 measured reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.5827P] where P = (Fo2 + 2Fc2)/3
4415 reflections (Δ/σ)max = 0.003
244 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.93 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.32817 (17) 0.37072 (18) −0.0249 (3) 0.0477 (6)
H1 0.3479 0.4340 0.0067 0.057*
C2 0.25884 (18) 0.3640 (2) −0.1206 (3) 0.0541 (7)
H2 0.2316 0.4228 −0.1523 0.065*
C3 0.22993 (16) 0.2711 (2) −0.1692 (3) 0.0545 (7)
H3 0.1838 0.2673 −0.2356 0.065*
C4 0.26908 (16) 0.1828 (2) −0.1200 (3) 0.0487 (6)
H4 0.2488 0.1200 −0.1526 0.058*
C5 0.33842 (14) 0.18813 (17) −0.0221 (3) 0.0387 (5)
C6 0.37999 (16) 0.09419 (17) 0.0346 (3) 0.0421 (6)
C7 0.45299 (16) 0.10389 (17) 0.1362 (3) 0.0421 (6)
H7 0.4800 0.0455 0.1704 0.051*
C8 0.48218 (15) 0.19489 (17) 0.1817 (3) 0.0389 (5)
C9 0.44255 (15) 0.29198 (17) 0.1280 (3) 0.0410 (5)
C10 0.36854 (15) 0.28351 (16) 0.0242 (3) 0.0385 (5)
C11 0.59314 (15) 0.12805 (17) 0.3357 (3) 0.0447 (6)
H11A 0.6115 0.0873 0.2450 0.054*
H11B 0.5606 0.0856 0.4060 0.054*
C12 0.66411 (15) 0.17104 (17) 0.4275 (3) 0.0415 (5)
C13 0.68666 (15) 0.26868 (17) 0.4532 (3) 0.0410 (5)
H13 0.6606 0.3271 0.4158 0.049*
C14 0.80758 (16) 0.3445 (2) 0.6053 (3) 0.0488 (6)
H14A 0.8309 0.3247 0.7095 0.059*
H14B 0.7750 0.4050 0.6222 0.059*
C15 0.87538 (15) 0.36917 (18) 0.4899 (3) 0.0420 (5)
C16 0.93614 (18) 0.2990 (2) 0.4612 (4) 0.0565 (7)
H16 0.9345 0.2359 0.5116 0.068*
C17 0.99932 (18) 0.3220 (2) 0.3580 (4) 0.0628 (8)
H17 1.0402 0.2747 0.3394 0.075*
C18 1.00118 (16) 0.4152 (2) 0.2834 (3) 0.0506 (6)
C19 0.94163 (17) 0.4853 (2) 0.3095 (3) 0.0532 (6)
H19 0.9433 0.5482 0.2583 0.064*
C20 0.87863 (17) 0.4614 (2) 0.4131 (3) 0.0494 (6)
H20 0.8378 0.5089 0.4308 0.059*
N1 0.71901 (16) 0.11000 (16) 0.5018 (3) 0.0625 (7)
N2 0.77460 (15) 0.16630 (17) 0.5737 (3) 0.0628 (7)
N3 0.75486 (12) 0.26276 (15) 0.5446 (2) 0.0428 (5)
O1 0.47077 (12) 0.37334 (12) 0.1695 (2) 0.0578 (5)
O2 0.35311 (12) 0.01052 (13) −0.0017 (2) 0.0591 (5)
O3 0.54657 (11) 0.21317 (12) 0.2785 (2) 0.0480 (4)
Br1 1.08857 (2) 0.44786 (3) 0.14393 (4) 0.07837 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0497 (16) 0.0378 (13) 0.0558 (14) 0.0009 (12) 0.0050 (12) −0.0021 (11)
C2 0.0514 (17) 0.0522 (16) 0.0586 (15) 0.0098 (13) 0.0028 (13) 0.0060 (12)
C3 0.0387 (15) 0.0711 (19) 0.0536 (14) 0.0025 (13) 0.0001 (12) 0.0037 (13)
C4 0.0466 (15) 0.0509 (15) 0.0486 (13) −0.0089 (12) 0.0031 (11) −0.0067 (11)
C5 0.0409 (13) 0.0379 (12) 0.0375 (11) −0.0041 (10) 0.0084 (9) −0.0056 (9)
C6 0.0474 (15) 0.0329 (12) 0.0461 (12) −0.0055 (11) 0.0056 (11) −0.0087 (10)
C7 0.0456 (15) 0.0298 (12) 0.0509 (13) 0.0017 (10) −0.0001 (11) −0.0048 (10)
C8 0.0381 (13) 0.0330 (12) 0.0458 (12) −0.0029 (10) 0.0040 (10) −0.0041 (9)
C9 0.0433 (14) 0.0319 (12) 0.0479 (12) −0.0024 (10) 0.0071 (10) −0.0026 (10)
C10 0.0407 (13) 0.0331 (12) 0.0420 (11) −0.0008 (10) 0.0084 (10) −0.0020 (9)
C11 0.0432 (14) 0.0306 (12) 0.0602 (14) 0.0006 (10) −0.0015 (11) −0.0038 (10)
C12 0.0398 (13) 0.0341 (12) 0.0508 (13) −0.0019 (11) 0.0037 (10) −0.0003 (10)
C13 0.0390 (13) 0.0358 (12) 0.0482 (12) 0.0036 (10) −0.0021 (10) 0.0001 (10)
C14 0.0443 (15) 0.0543 (15) 0.0478 (13) −0.0065 (12) −0.0041 (11) −0.0056 (11)
C15 0.0376 (13) 0.0474 (14) 0.0406 (11) −0.0050 (11) −0.0091 (10) −0.0040 (10)
C16 0.0542 (17) 0.0477 (15) 0.0677 (17) 0.0023 (13) 0.0016 (13) 0.0069 (13)
C17 0.0464 (17) 0.0701 (19) 0.0719 (18) 0.0147 (15) 0.0026 (14) −0.0014 (16)
C18 0.0389 (15) 0.0725 (18) 0.0403 (12) −0.0077 (13) −0.0046 (11) −0.0019 (12)
C19 0.0519 (17) 0.0582 (16) 0.0493 (13) −0.0001 (14) −0.0044 (12) 0.0105 (12)
C20 0.0473 (16) 0.0517 (15) 0.0492 (13) 0.0077 (12) −0.0039 (12) 0.0016 (11)
N1 0.0598 (16) 0.0377 (12) 0.0895 (17) −0.0032 (11) −0.0182 (13) 0.0130 (12)
N2 0.0595 (15) 0.0447 (13) 0.0836 (16) −0.0032 (12) −0.0210 (13) 0.0151 (12)
N3 0.0412 (12) 0.0389 (11) 0.0481 (11) −0.0035 (9) −0.0021 (9) 0.0019 (9)
O1 0.0615 (13) 0.0288 (9) 0.0826 (13) −0.0067 (8) −0.0128 (10) −0.0080 (8)
O2 0.0655 (13) 0.0337 (9) 0.0777 (13) −0.0108 (9) −0.0115 (10) −0.0110 (9)
O3 0.0449 (10) 0.0330 (9) 0.0657 (11) −0.0025 (7) −0.0115 (8) −0.0047 (8)
Br1 0.0513 (2) 0.1308 (4) 0.05317 (19) −0.00707 (18) 0.00537 (14) 0.01042 (17)

Geometric parameters (Å, º)

C1—C2 1.379 (4) C11—H11B 0.9700
C1—C10 1.384 (3) C12—N1 1.348 (3)
C1—H1 0.9300 C12—C13 1.354 (3)
C2—C3 1.369 (4) C13—N3 1.343 (3)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.386 (4) C14—N3 1.466 (3)
C3—H3 0.9300 C14—C15 1.509 (3)
C4—C5 1.388 (3) C14—H14A 0.9700
C4—H4 0.9300 C14—H14B 0.9700
C5—C10 1.401 (3) C15—C20 1.371 (3)
C5—C6 1.485 (3) C15—C16 1.383 (4)
C6—O2 1.223 (3) C16—C17 1.384 (4)
C6—C7 1.458 (4) C16—H16 0.9300
C7—C8 1.342 (3) C17—C18 1.373 (4)
C7—H7 0.9300 C17—H17 0.9300
C8—O3 1.337 (3) C18—C19 1.364 (4)
C8—C9 1.498 (3) C18—Br1 1.901 (3)
C9—O1 1.215 (3) C19—C20 1.387 (4)
C9—C10 1.480 (3) C19—H19 0.9300
C11—O3 1.433 (3) C20—H20 0.9300
C11—C12 1.492 (3) N1—N2 1.311 (3)
C11—H11A 0.9700 N2—N3 1.332 (3)
C2—C1—C10 120.2 (2) N1—C12—C13 108.4 (2)
C2—C1—H1 119.9 N1—C12—C11 121.1 (2)
C10—C1—H1 119.9 C13—C12—C11 130.5 (2)
C3—C2—C1 120.3 (3) N3—C13—C12 104.9 (2)
C3—C2—H2 119.8 N3—C13—H13 127.6
C1—C2—H2 119.8 C12—C13—H13 127.6
C2—C3—C4 120.4 (3) N3—C14—C15 112.5 (2)
C2—C3—H3 119.8 N3—C14—H14A 109.1
C4—C3—H3 119.8 C15—C14—H14A 109.1
C3—C4—C5 120.1 (2) N3—C14—H14B 109.1
C3—C4—H4 120.0 C15—C14—H14B 109.1
C5—C4—H4 120.0 H14A—C14—H14B 107.8
C4—C5—C10 119.1 (2) C20—C15—C16 118.7 (2)
C4—C5—C6 120.7 (2) C20—C15—C14 120.9 (2)
C10—C5—C6 120.1 (2) C16—C15—C14 120.4 (2)
O2—C6—C7 120.7 (2) C15—C16—C17 120.6 (3)
O2—C6—C5 120.7 (2) C15—C16—H16 119.7
C7—C6—C5 118.6 (2) C17—C16—H16 119.7
C8—C7—C6 121.7 (2) C18—C17—C16 119.4 (3)
C8—C7—H7 119.1 C18—C17—H17 120.3
C6—C7—H7 119.1 C16—C17—H17 120.3
O3—C8—C7 127.1 (2) C19—C18—C17 120.9 (3)
O3—C8—C9 111.04 (19) C19—C18—Br1 119.5 (2)
C7—C8—C9 121.8 (2) C17—C18—Br1 119.6 (2)
O1—C9—C10 122.4 (2) C18—C19—C20 119.2 (3)
O1—C9—C8 120.5 (2) C18—C19—H19 120.4
C10—C9—C8 117.12 (19) C20—C19—H19 120.4
C1—C10—C5 119.9 (2) C15—C20—C19 121.2 (3)
C1—C10—C9 119.5 (2) C15—C20—H20 119.4
C5—C10—C9 120.6 (2) C19—C20—H20 119.4
O3—C11—C12 106.23 (18) N2—N1—C12 108.9 (2)
O3—C11—H11A 110.5 N1—N2—N3 107.0 (2)
C12—C11—H11A 110.5 N2—N3—C13 110.8 (2)
O3—C11—H11B 110.5 N2—N3—C14 119.9 (2)
C12—C11—H11B 110.5 C13—N3—C14 129.3 (2)
H11A—C11—H11B 108.7 C8—O3—C11 117.99 (18)
C10—C1—C2—C3 −0.7 (4) O3—C11—C12—C13 −2.2 (4)
C1—C2—C3—C4 1.3 (4) N1—C12—C13—N3 −0.5 (3)
C2—C3—C4—C5 −0.6 (4) C11—C12—C13—N3 179.7 (2)
C3—C4—C5—C10 −0.8 (4) N3—C14—C15—C20 114.2 (3)
C3—C4—C5—C6 178.7 (2) N3—C14—C15—C16 −66.6 (3)
C4—C5—C6—O2 −1.2 (4) C20—C15—C16—C17 0.6 (4)
C10—C5—C6—O2 178.2 (2) C14—C15—C16—C17 −178.7 (2)
C4—C5—C6—C7 179.5 (2) C15—C16—C17—C18 −0.3 (4)
C10—C5—C6—C7 −1.1 (3) C16—C17—C18—C19 −0.1 (4)
O2—C6—C7—C8 −177.9 (2) C16—C17—C18—Br1 179.2 (2)
C5—C6—C7—C8 1.3 (4) C17—C18—C19—C20 0.1 (4)
C6—C7—C8—O3 177.6 (2) Br1—C18—C19—C20 −179.1 (2)
C6—C7—C8—C9 −1.3 (4) C16—C15—C20—C19 −0.6 (4)
O3—C8—C9—O1 1.8 (3) C14—C15—C20—C19 178.7 (2)
C7—C8—C9—O1 −179.2 (2) C18—C19—C20—C15 0.2 (4)
O3—C8—C9—C10 −178.0 (2) C13—C12—N1—N2 0.4 (3)
C7—C8—C9—C10 1.0 (3) C11—C12—N1—N2 −179.8 (2)
C2—C1—C10—C5 −0.6 (4) C12—N1—N2—N3 −0.1 (3)
C2—C1—C10—C9 −179.5 (2) N1—N2—N3—C13 −0.3 (3)
C4—C5—C10—C1 1.4 (3) N1—N2—N3—C14 −178.0 (2)
C6—C5—C10—C1 −178.1 (2) C12—C13—N3—N2 0.5 (3)
C4—C5—C10—C9 −179.8 (2) C12—C13—N3—C14 177.9 (2)
C6—C5—C10—C9 0.8 (3) C15—C14—N3—N2 86.2 (3)
O1—C9—C10—C1 −1.7 (4) C15—C14—N3—C13 −91.0 (3)
C8—C9—C10—C1 178.1 (2) C7—C8—O3—C11 3.3 (4)
O1—C9—C10—C5 179.4 (2) C9—C8—O3—C11 −177.8 (2)
C8—C9—C10—C5 −0.8 (3) C12—C11—O3—C8 175.2 (2)
O3—C11—C12—N1 178.0 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1···N1i 0.93 2.57 3.251 (3) 131
C13—H13···O2i 0.93 2.53 3.277 (3) 138
C11—H11A···O2ii 0.97 2.46 3.425 (3) 175

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5090).

References

  1. Abu-Orabi, S. T., Atfah, M. A., Jibril, I., Mari’i, F. M. & Al-Sheikh Ali, A. (1989). J. Heterocycl. Chem. 26, 1461–1468.
  2. Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Demirbaş, N., Ugurluoglu, R. & Demirbaş, A. (2002). Bioorg. Med. Chem. 10, 3717–3723. [DOI] [PubMed]
  4. Kritsanida, M., Mouroutsou, A., Marakos, P., Pouli, N., Papakonstantinou-Garoufalias, S., Pannecouque, C., Witvrouw, M. & De Clercq, E. (2002). Farmaco, 57, 253–257. [DOI] [PubMed]
  5. Rokade, Y. B. & Sayyed, R. Z. (2009). Rasayan J. Chem. 2, 972–980.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). Eur. J. Med. Chem 2, 1854–1867. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989015004429/su5090sup1.cif

e-71-0o231-sup1.cif (20.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015004429/su5090Isup2.hkl

e-71-0o231-Isup2.hkl (216.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015004429/su5090Isup3.cml

. DOI: 10.1107/S2056989015004429/su5090fig1.tif

The mol­ecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

c . DOI: 10.1107/S2056989015004429/su5090fig2.tif

A partial view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

c . DOI: 10.1107/S2056989015004429/su5090fig3.tif

A perspective view along the c axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these inter­actions have been omitted for clarity).

CCDC reference: 1052111

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES