The title compound crystallizes with two molecules in the asymmetric unit (Z′ = 2) which are linked into dimers by
(20) C—H⋯O interactions. These dimers are further linked into sheets in the ab plane by weak intermolecular C—H⋯N interactions.
Keywords: crystal structure, aminobenzothiazole derivatives, aminothiazole Schiff bases, hydrogen bonding
Abstract
The title compound, C15H12N2O2S, crystallizes in the orthorhombic space group Pna21, with two molecules in the asymmetric unit (Z′ = 2). Each molecule consists of a 2-hydroxy Schiff base moiety linked through a spacer to a 2-aminobenzothiazole moiety. Each molecule contains an intramolecular hydrogen bond between the –OH group and imine N atom, forming a six-membered ring. The two independent molecules are linked by a pair of C—H⋯O hydrogen bonds, forming dimers with an R 2 2(20) ring motif. These dimers are further lined into sheets in the ab plane by weak intermolecular C—H⋯N interactions. The structure was refined as an inversion twin
Chemical context
A wide range of biological activities have been attributed to aminothiazoles and compounds having similar structures (Tahiliani et al., 2003 ▸) and they have many applications in both human and veterinary medicine (Smith et al., 1999 ▸; Sarhan et al., 2010 ▸). Certain 2-aminobenzothiazole derivatives act on the central nervous system (Funderburk et al., 1953 ▸), possess antimicrobial (Murhekar & Khadsan, 2010 ▸; Ravi et al., 2014 ▸), antifungal (Catalano et al., 2013 ▸) and antibacterial properties (Asiri et al., 2013 ▸), serve as selective receptors for anion sensing (Hijji & Wairia, 2005 ▸), are active in corrosion inhibition (Quraishi et al., 1997 ▸; Rawat & Quraishi, 2003 ▸) and act as plant-growth regulators (Mahajan et al., 2013 ▸). In addition, some metal complexes of Schiff bases of 2-aminobenzothiazole derivatives have potent antibacterial properties (Sharma et al., 2002 ▸; Song et al., 2010 ▸). Among antitumor agents discovered in recent years, the identification of various 2-(4-aminophenyl)benzothiazoles as potent and selective antitumor drugs against breast, ovarian, colon and renal cell lines has stimulated remarkable interest (Usman et al., 2003 ▸; Shi et al., 1996 ▸; Havrylyuk et al. 2010 ▸) in this class of compound from both a synthetic, and particularly, a structural point of view. Aminothiazole Schiff bases have been prepared as intermediate ligands and for complexation with various metals (Liang et al.,1999 ▸; Liu et al., 2009 ▸).
In this context, the synthesis and structural characterization of new 2-aminobenzothiazole Schiff base derivatives is of interest (El’tsov & Mokrushin, 2002 ▸).
Structural commentary
The title compound, C15H12N2O2S, crystallizes in the orthorhombic space group, Pna21, with two molecules (A and B) in the asymmetric unit (Z′ = 2). Each molecule consists of a 2-hydroxy Schiff base moiety linked through a spacer to a 2-aminobenzothiazole moiety. This spacer is both planar [r.m.s. deviations of fitted atoms of 0.004 (3) and 0.007 (3) Å, respectively for molecules A and B] and very close to coplanar with both the Schiff base and 2-aminobenzothiazole end moieties [making dihedral angles of 2.6 (9) and 4.0 (3)°, respectively, in molecule A and 3.3 (8) and 3.9 (7)° in molecule B]. The molecules themselves are very close to planar, as is shown by the dihedral angles of 4.0 (3) and 6.3 (2) between the two end groups for molecules A and B, respectively. Each molecule contains an intramolecular hydrogen bond between the OH group and imine N atom, forming a six-membered ring.
Supramolecular features
In addition to the intramolecular hydrogen bond mentioned above, the molecules are linked by a pair of C—H⋯O hydrogen bonds (Table 1 ▸), forming dimers with an
(20) ring motif, as shown in Fig. 1 ▸. These dimers are further linked into sheets in the ab plane by weak intermolecular C—H⋯N interactions involving C15 and N2B, as shown in Fig. 2 ▸.
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| O1AH1AN1A | 0.84 | 1.93 | 2.647(9) | 143 |
| C13AH13AO1B | 0.95 | 2.48 | 3.289(9) | 144 |
| C15AH15AN2B i | 0.98 | 2.57 | 3.525(10) | 166 |
| O1BH1BN1B | 0.84 | 1.89 | 2.636(9) | 147 |
| C13BH13BO1A | 0.95 | 2.53 | 3.356(10) | 145 |
Symmetry code: (i)
.
Figure 1.
Molecular diagram for molecules A and B of the title compound, showing the atom labeling. Displacement parameters are drawn at the 30% probability level. The diagram shows the two molecules (A and B) linked into dimers by
(20) C—H⋯O hydrogen bonds (dashed lines; see Table 1 ▸ for details).
Figure 2.
Packing diagram, viewed along the b axis, showing a sheet of
(20) C—H⋯O-linked dimers in the ac plane.
Database survey
A search of the Cambridge Structural Database (CSD, Version 5.35, last update November 2014; Groom & Allen, 2014 ▸) for related Schiff base derivatives of 2-aminobenzothiazole gave 23 hits of which the closest example to the title compound was (E)-2-[(6-ethoxybenzothiazol-2-yl)iminomethyl]-6-methoxyphenol (Kong, 2009 ▸).
Synthesis and crystallization
A mixture of 0.505 g (4.10 mmol) salicylaldehyde and 0.746 g (4.10 mmol) 2-amino-6-methoxybenzothiozole was dissolved in 2 ml of acetonitrile in a vial. The mixture was reacted in a Biotage initiator eight mono mode microwave at 423 K for 2 min and then allowed to cool for 15 min. The resulting product was recrystallized from acetonitrile, filtered and then vacuum dried to afford 0.971 g (86% yield) of a yellow crystalline solid (m.p. 399–403 K). A sample was dissolved in ethanol and allowed to crystallize by slow evaporation to give yellow needles used for X-ray structural determination.
1H NMR (300 MHz, CDCl3): δ 12.07 (s, 1H), 9.36 (s, 1H), 8.81 (dd, J = 9.0, 2.5 Hz, 1H), 8.39 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 9.0 Hz. 1H), 7.55 (m, 2H), 7.09 (d, 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 3.83 (s, 3H)
13C NMR (300 MHz, CDCl3, p.p.m.): δ 55.07, 105.07, 115.46, 118.4, 121.2, 122.88, 125.26, 130.4, 132.44, 135.07, 145.59, 157.8 162.69, 165.36, 169.49
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▸. C-bound H atoms were positioned geometrically and refined as riding: C–H = 0.93–0.99 Å with Uiso(H) = 1.5U eq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. Phenol H atoms were located in a difference Fourier map and then refined as riding on their attached O atoms.
Table 2. Experimental details.
| Crystal data | |
| Chemical formula | C15H12N2O2S |
| M r | 284.33 |
| Crystal system, space group | Orthorhombic, P n a21 |
| Temperature (K) | 120 |
| a, b, c () | 35.623(2), 3.8172(2), 18.6525(8) |
| V (3) | 2536.4(2) |
| Z | 8 |
| Radiation type | Cu K |
| (mm1) | 2.30 |
| Crystal size (mm) | 0.38 0.09 0.06 |
| Data collection | |
| Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) |
| Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012 ▸) |
| T min, T max | 0.573, 0.863 |
| No. of measured, independent and observed [I > 2(I)] reflections | 6990, 3895, 3677 |
| R int | 0.045 |
| (sin /)max (1) | 0.630 |
| Refinement | |
| R[F 2 > 2(F 2)], wR(F 2), S | 0.073, 0.189, 1.09 |
| No. of reflections | 3895 |
| No. of parameters | 364 |
| No. of restraints | 1 |
| H-atom treatment | H-atom parameters constrained |
| max, min (e 3) | 1.01, 0.74 |
| Absolute structure | Refined as an inversion twin |
| Absolute structure parameter | 0.65(5) |
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015005228/hg5435Isup3.cml
CCDC reference: 1053989
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
RJB wishes to acknowledge the assistance of the Department of Chemistry at the University of Canterbury, New Zealand, in allowing access to their diffractometer during his visit in 2014. YH would like to thank support from the Qatar National Research Fund Grant No. NPRP 7–495-1–094.
supplementary crystallographic information
Crystal data
| C15H12N2O2S | Dx = 1.489 Mg m−3 |
| Mr = 284.33 | Cu Kα radiation, λ = 1.54178 Å |
| Orthorhombic, Pna21 | Cell parameters from 2917 reflections |
| a = 35.623 (2) Å | θ = 4.7–76.1° |
| b = 3.8172 (2) Å | µ = 2.30 mm−1 |
| c = 18.6525 (8) Å | T = 120 K |
| V = 2536.4 (2) Å3 | Needle, yellow–orange |
| Z = 8 | 0.38 × 0.09 × 0.06 mm |
| F(000) = 1184 |
Data collection
| Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 3895 independent reflections |
| Radiation source: sealed X-ray tube | 3677 reflections with I > 2σ(I) |
| Detector resolution: 5.3250 pixels mm-1 | Rint = 0.045 |
| ω scans | θmax = 76.2°, θmin = 3.4° |
| Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −41→44 |
| Tmin = 0.573, Tmax = 0.863 | k = −2→4 |
| 6990 measured reflections | l = −20→23 |
Refinement
| Refinement on F2 | Hydrogen site location: mixed |
| Least-squares matrix: full | H-atom parameters constrained |
| R[F2 > 2σ(F2)] = 0.073 | w = 1/[σ2(Fo2) + (0.0845P)2 + 6.6687P] where P = (Fo2 + 2Fc2)/3 |
| wR(F2) = 0.189 | (Δ/σ)max < 0.001 |
| S = 1.09 | Δρmax = 1.01 e Å−3 |
| 3895 reflections | Δρmin = −0.74 e Å−3 |
| 364 parameters | Absolute structure: Refined as an inversion twin. |
| 1 restraint | Absolute structure parameter: 0.65 (5) |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refined as a 2-component inversion twin. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1A | 0.87402 (5) | 0.3471 (4) | 0.32176 (9) | 0.0241 (4) | |
| O1A | 0.97069 (15) | 0.6508 (16) | 0.4723 (3) | 0.0337 (13) | |
| H1A | 0.9559 | 0.6313 | 0.4376 | 0.050* | |
| O2A | 0.78912 (15) | −0.1334 (15) | 0.1150 (3) | 0.0283 (12) | |
| N1A | 0.94790 (18) | 0.3743 (16) | 0.3497 (4) | 0.0250 (13) | |
| N2A | 0.92781 (17) | 0.1374 (18) | 0.2372 (4) | 0.0283 (13) | |
| C1A | 1.0055 (2) | 0.5657 (19) | 0.4512 (4) | 0.0261 (15) | |
| C2A | 1.0359 (2) | 0.648 (2) | 0.4958 (4) | 0.0306 (16) | |
| H1 | 1.0314 | 0.7620 | 0.5402 | 0.037* | |
| C3A | 1.0718 (2) | 0.568 (2) | 0.4768 (4) | 0.0318 (17) | |
| H2 | 1.0919 | 0.6241 | 0.5082 | 0.038* | |
| C4A | 1.0793 (2) | 0.403 (2) | 0.4114 (5) | 0.0274 (15) | |
| H3 | 1.1045 | 0.3592 | 0.3970 | 0.033* | |
| C5A | 1.0495 (2) | 0.303 (2) | 0.3674 (4) | 0.0274 (16) | |
| H4 | 1.0542 | 0.1730 | 0.3249 | 0.033* | |
| C6A | 1.0126 (2) | 0.394 (2) | 0.3862 (4) | 0.0274 (16) | |
| C7A | 0.9824 (2) | 0.2951 (18) | 0.3370 (4) | 0.0238 (15) | |
| H5 | 0.9884 | 0.1694 | 0.2946 | 0.029* | |
| C8A | 0.9213 (2) | 0.2730 (17) | 0.2996 (4) | 0.0225 (14) | |
| C9A | 0.89431 (19) | 0.0635 (19) | 0.2017 (4) | 0.0237 (14) | |
| C10A | 0.8905 (2) | −0.087 (2) | 0.1348 (4) | 0.0265 (15) | |
| H10A | 0.9120 | −0.1510 | 0.1078 | 0.032* | |
| C11A | 0.8548 (2) | −0.1449 (19) | 0.1075 (4) | 0.0264 (16) | |
| H11A | 0.8521 | −0.2508 | 0.0617 | 0.032* | |
| C12A | 0.8227 (2) | −0.0498 (17) | 0.1462 (4) | 0.0212 (14) | |
| C13A | 0.8255 (2) | 0.1077 (19) | 0.2129 (4) | 0.0254 (15) | |
| H13A | 0.8037 | 0.1706 | 0.2392 | 0.031* | |
| C14A | 0.8617 (2) | 0.1715 (18) | 0.2403 (4) | 0.0240 (14) | |
| C15A | 0.75623 (19) | −0.027 (2) | 0.1521 (5) | 0.0289 (16) | |
| H15A | 0.7340 | −0.1033 | 0.1254 | 0.043* | |
| H15B | 0.7560 | 0.2289 | 0.1566 | 0.043* | |
| H15C | 0.7560 | −0.1328 | 0.2000 | 0.043* | |
| S1B | 0.87656 (5) | 0.8509 (4) | 0.49182 (9) | 0.0246 (4) | |
| O1B | 0.78077 (16) | 0.5412 (16) | 0.3390 (3) | 0.0361 (14) | |
| H1B | 0.7960 | 0.6119 | 0.3701 | 0.054* | |
| O2B | 0.95964 (15) | 1.3166 (15) | 0.7026 (3) | 0.0293 (12) | |
| N1B | 0.80272 (18) | 0.8089 (15) | 0.4624 (4) | 0.0247 (13) | |
| N2B | 0.82255 (17) | 1.0626 (16) | 0.5746 (4) | 0.0263 (13) | |
| C1B | 0.7453 (2) | 0.5753 (18) | 0.3644 (4) | 0.0248 (15) | |
| C2B | 0.7160 (2) | 0.4583 (19) | 0.3210 (5) | 0.0291 (15) | |
| H6 | 0.7209 | 0.3632 | 0.2749 | 0.035* | |
| C3B | 0.6790 (2) | 0.484 (2) | 0.3472 (4) | 0.0299 (17) | |
| H7 | 0.6587 | 0.4020 | 0.3187 | 0.036* | |
| C4B | 0.6717 (2) | 0.628 (2) | 0.4136 (4) | 0.0287 (16) | |
| H8 | 0.6466 | 0.6431 | 0.4301 | 0.034* | |
| C5B | 0.7005 (2) | 0.7494 (18) | 0.4564 (4) | 0.0243 (15) | |
| H9 | 0.6950 | 0.8494 | 0.5019 | 0.029* | |
| C6B | 0.7381 (2) | 0.7258 (16) | 0.4329 (4) | 0.0204 (14) | |
| C7B | 0.7681 (2) | 0.8352 (17) | 0.4793 (4) | 0.0245 (15) | |
| H10 | 0.7618 | 0.9319 | 0.5247 | 0.029* | |
| C8B | 0.8289 (2) | 0.9165 (19) | 0.5123 (4) | 0.0252 (15) | |
| C9B | 0.8560 (2) | 1.1290 (19) | 0.6098 (4) | 0.0253 (15) | |
| C10B | 0.8589 (2) | 1.2798 (19) | 0.6777 (4) | 0.0262 (16) | |
| H10B | 0.8370 | 1.3415 | 0.7040 | 0.031* | |
| C11B | 0.8943 (2) | 1.3379 (19) | 0.7062 (5) | 0.0261 (15) | |
| H11B | 0.8967 | 1.4428 | 0.7522 | 0.031* | |
| C12B | 0.9269 (2) | 1.2432 (18) | 0.6678 (5) | 0.0252 (16) | |
| C13B | 0.9242 (2) | 1.0870 (17) | 0.6009 (4) | 0.0246 (14) | |
| H13B | 0.9460 | 1.0207 | 0.5748 | 0.029* | |
| C14B | 0.8884 (2) | 1.0313 (17) | 0.5736 (4) | 0.0234 (14) | |
| C15B | 0.9936 (2) | 1.235 (2) | 0.6643 (5) | 0.0288 (16) | |
| H15D | 1.0149 | 1.3469 | 0.6882 | 0.043* | |
| H15E | 0.9916 | 1.3226 | 0.6150 | 0.043* | |
| H15F | 0.9972 | 0.9808 | 0.6635 | 0.043* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1A | 0.0280 (8) | 0.0261 (8) | 0.0182 (9) | −0.0016 (6) | −0.0003 (7) | −0.0049 (7) |
| O1A | 0.029 (3) | 0.044 (3) | 0.028 (3) | −0.005 (2) | 0.000 (2) | 0.001 (3) |
| O2A | 0.031 (3) | 0.031 (3) | 0.023 (3) | −0.003 (2) | −0.002 (2) | −0.004 (2) |
| N1A | 0.032 (3) | 0.021 (3) | 0.022 (3) | −0.002 (2) | −0.002 (3) | −0.006 (2) |
| N2A | 0.032 (3) | 0.033 (3) | 0.020 (3) | −0.007 (2) | −0.003 (3) | 0.001 (3) |
| C1A | 0.033 (4) | 0.025 (3) | 0.020 (4) | −0.006 (3) | −0.003 (3) | 0.006 (3) |
| C2A | 0.040 (4) | 0.034 (4) | 0.018 (4) | −0.015 (3) | −0.002 (3) | 0.002 (3) |
| C3A | 0.039 (4) | 0.033 (4) | 0.024 (4) | −0.007 (3) | −0.008 (3) | 0.009 (3) |
| C4A | 0.027 (3) | 0.026 (3) | 0.030 (4) | 0.004 (3) | 0.001 (3) | 0.002 (3) |
| C5A | 0.038 (4) | 0.030 (4) | 0.014 (4) | −0.001 (3) | −0.001 (3) | 0.000 (3) |
| C6A | 0.034 (4) | 0.025 (3) | 0.023 (4) | −0.002 (3) | 0.000 (3) | 0.004 (3) |
| C7A | 0.037 (4) | 0.022 (3) | 0.012 (3) | −0.003 (3) | 0.000 (3) | 0.003 (3) |
| C8A | 0.034 (4) | 0.017 (3) | 0.017 (4) | 0.000 (2) | 0.002 (3) | −0.004 (2) |
| C9A | 0.028 (3) | 0.027 (3) | 0.016 (3) | −0.004 (3) | 0.001 (3) | 0.007 (3) |
| C10A | 0.030 (3) | 0.028 (4) | 0.022 (4) | 0.003 (3) | 0.003 (3) | −0.002 (3) |
| C11A | 0.041 (4) | 0.021 (3) | 0.016 (4) | −0.008 (3) | 0.000 (3) | 0.003 (3) |
| C12A | 0.032 (3) | 0.014 (3) | 0.018 (3) | −0.004 (2) | −0.003 (3) | 0.004 (3) |
| C13A | 0.030 (3) | 0.027 (4) | 0.019 (3) | 0.002 (3) | 0.004 (3) | 0.004 (3) |
| C14A | 0.033 (3) | 0.016 (3) | 0.023 (4) | −0.005 (3) | 0.003 (3) | 0.005 (3) |
| C15A | 0.025 (3) | 0.029 (3) | 0.033 (4) | −0.003 (3) | −0.002 (3) | −0.005 (3) |
| S1B | 0.0291 (9) | 0.0271 (8) | 0.0177 (9) | 0.0008 (6) | −0.0003 (6) | −0.0047 (7) |
| O1B | 0.033 (3) | 0.046 (3) | 0.029 (3) | −0.001 (2) | 0.002 (2) | −0.013 (3) |
| O2B | 0.029 (3) | 0.036 (3) | 0.022 (3) | 0.004 (2) | −0.001 (2) | −0.001 (2) |
| N1B | 0.032 (3) | 0.020 (3) | 0.022 (3) | 0.002 (2) | −0.004 (3) | 0.002 (2) |
| N2B | 0.034 (3) | 0.020 (3) | 0.024 (3) | −0.002 (2) | −0.004 (3) | −0.003 (3) |
| C1B | 0.033 (4) | 0.018 (3) | 0.023 (4) | 0.001 (3) | −0.003 (3) | 0.002 (3) |
| C2B | 0.040 (4) | 0.029 (3) | 0.018 (4) | 0.000 (3) | 0.000 (3) | 0.003 (3) |
| C3B | 0.036 (4) | 0.028 (4) | 0.026 (4) | −0.002 (3) | −0.010 (3) | 0.009 (3) |
| C4B | 0.030 (4) | 0.030 (4) | 0.026 (4) | 0.000 (3) | 0.003 (3) | 0.002 (3) |
| C5B | 0.031 (4) | 0.020 (3) | 0.022 (4) | 0.001 (3) | 0.003 (3) | 0.003 (3) |
| C6B | 0.029 (3) | 0.012 (3) | 0.021 (4) | 0.001 (2) | −0.002 (3) | 0.004 (3) |
| C7B | 0.040 (4) | 0.014 (3) | 0.019 (4) | −0.003 (2) | −0.003 (3) | 0.009 (3) |
| C8B | 0.028 (4) | 0.022 (3) | 0.025 (4) | 0.002 (3) | 0.001 (3) | 0.000 (3) |
| C9B | 0.033 (3) | 0.019 (3) | 0.024 (4) | −0.004 (2) | −0.001 (3) | −0.001 (3) |
| C10B | 0.040 (4) | 0.017 (3) | 0.021 (4) | 0.001 (3) | 0.005 (3) | −0.002 (3) |
| C11B | 0.033 (4) | 0.021 (3) | 0.024 (4) | −0.002 (3) | 0.000 (3) | −0.002 (3) |
| C12B | 0.033 (4) | 0.014 (3) | 0.028 (4) | −0.004 (2) | −0.003 (3) | 0.002 (3) |
| C13B | 0.033 (3) | 0.018 (3) | 0.023 (4) | 0.002 (3) | 0.003 (3) | 0.006 (3) |
| C14B | 0.045 (4) | 0.014 (3) | 0.011 (3) | 0.000 (3) | 0.003 (3) | 0.006 (2) |
| C15B | 0.040 (4) | 0.025 (3) | 0.021 (4) | −0.002 (3) | −0.004 (3) | 0.001 (3) |
Geometric parameters (Å, º)
| S1A—C14A | 1.718 (8) | S1B—C14B | 1.726 (8) |
| S1A—C8A | 1.759 (8) | S1B—C8B | 1.758 (8) |
| O1A—C1A | 1.341 (10) | O1B—C1B | 1.356 (9) |
| O1A—H1A | 0.8399 | O1B—H1B | 0.8400 |
| O2A—C12A | 1.369 (9) | O2B—C12B | 1.364 (9) |
| O2A—C15A | 1.421 (9) | O2B—C15B | 1.438 (10) |
| N1A—C7A | 1.288 (10) | N1B—C7B | 1.278 (10) |
| N1A—C8A | 1.385 (10) | N1B—C8B | 1.380 (10) |
| N2A—C8A | 1.295 (10) | N2B—C8B | 1.309 (10) |
| N2A—C9A | 1.393 (9) | N2B—C9B | 1.383 (9) |
| C1A—C6A | 1.402 (11) | C1B—C2B | 1.395 (11) |
| C1A—C2A | 1.402 (11) | C1B—C6B | 1.424 (10) |
| C2A—C3A | 1.362 (12) | C2B—C3B | 1.409 (11) |
| C2A—H1 | 0.9500 | C2B—H6 | 0.9500 |
| C3A—C4A | 1.398 (12) | C3B—C4B | 1.378 (12) |
| C3A—H2 | 0.9500 | C3B—H7 | 0.9500 |
| C4A—C5A | 1.395 (11) | C4B—C5B | 1.381 (11) |
| C4A—H3 | 0.9500 | C4B—H8 | 0.9500 |
| C5A—C6A | 1.405 (12) | C5B—C6B | 1.412 (10) |
| C5A—H4 | 0.9500 | C5B—H9 | 0.9500 |
| C6A—C7A | 1.463 (11) | C6B—C7B | 1.435 (10) |
| C7A—H5 | 0.9500 | C7B—H10 | 0.9500 |
| C9A—C10A | 1.382 (11) | C9B—C14B | 1.388 (11) |
| C9A—C14A | 1.428 (10) | C9B—C10B | 1.396 (11) |
| C10A—C11A | 1.385 (11) | C10B—C11B | 1.388 (12) |
| C10A—H10A | 0.9500 | C10B—H10B | 0.9500 |
| C11A—C12A | 1.401 (11) | C11B—C12B | 1.410 (11) |
| C11A—H11A | 0.9500 | C11B—H11B | 0.9500 |
| C12A—C13A | 1.385 (11) | C12B—C13B | 1.387 (11) |
| C13A—C14A | 1.407 (10) | C13B—C14B | 1.391 (11) |
| C13A—H13A | 0.9500 | C13B—H13B | 0.9500 |
| C15A—H15A | 0.9800 | C15B—H15D | 0.9800 |
| C15A—H15B | 0.9800 | C15B—H15E | 0.9800 |
| C15A—H15C | 0.9800 | C15B—H15F | 0.9800 |
| C14A—S1A—C8A | 88.5 (4) | C14B—S1B—C8B | 89.2 (4) |
| C1A—O1A—H1A | 109.5 | C1B—O1B—H1B | 109.3 |
| C12A—O2A—C15A | 116.6 (6) | C12B—O2B—C15B | 116.0 (6) |
| C7A—N1A—C8A | 117.5 (6) | C7B—N1B—C8B | 117.6 (7) |
| C8A—N2A—C9A | 110.8 (6) | C8B—N2B—C9B | 110.5 (6) |
| O1A—C1A—C6A | 122.3 (7) | O1B—C1B—C2B | 117.6 (7) |
| O1A—C1A—C2A | 119.1 (7) | O1B—C1B—C6B | 121.3 (6) |
| C6A—C1A—C2A | 118.6 (7) | C2B—C1B—C6B | 121.1 (7) |
| C3A—C2A—C1A | 121.4 (8) | C1B—C2B—C3B | 118.4 (8) |
| C3A—C2A—H1 | 119.3 | C1B—C2B—H6 | 120.8 |
| C1A—C2A—H1 | 119.3 | C3B—C2B—H6 | 120.8 |
| C2A—C3A—C4A | 120.5 (7) | C4B—C3B—C2B | 121.0 (7) |
| C2A—C3A—H2 | 119.8 | C4B—C3B—H7 | 119.5 |
| C4A—C3A—H2 | 119.8 | C2B—C3B—H7 | 119.5 |
| C5A—C4A—C3A | 119.4 (7) | C3B—C4B—C5B | 120.9 (7) |
| C5A—C4A—H3 | 120.3 | C3B—C4B—H8 | 119.5 |
| C3A—C4A—H3 | 120.3 | C5B—C4B—H8 | 119.5 |
| C4A—C5A—C6A | 119.9 (7) | C4B—C5B—C6B | 120.2 (7) |
| C4A—C5A—H4 | 120.1 | C4B—C5B—H9 | 119.9 |
| C6A—C5A—H4 | 120.1 | C6B—C5B—H9 | 119.9 |
| C1A—C6A—C5A | 120.0 (7) | C5B—C6B—C1B | 118.3 (7) |
| C1A—C6A—C7A | 122.1 (7) | C5B—C6B—C7B | 120.0 (7) |
| C5A—C6A—C7A | 117.9 (7) | C1B—C6B—C7B | 121.6 (7) |
| N1A—C7A—C6A | 121.7 (7) | N1B—C7B—C6B | 123.1 (7) |
| N1A—C7A—H5 | 119.2 | N1B—C7B—H10 | 118.4 |
| C6A—C7A—H5 | 119.2 | C6B—C7B—H10 | 118.4 |
| N2A—C8A—N1A | 126.7 (7) | N2B—C8B—N1B | 127.5 (7) |
| N2A—C8A—S1A | 116.5 (6) | N2B—C8B—S1B | 114.9 (6) |
| N1A—C8A—S1A | 116.8 (5) | N1B—C8B—S1B | 117.6 (6) |
| C10A—C9A—N2A | 126.7 (7) | N2B—C9B—C14B | 115.8 (7) |
| C10A—C9A—C14A | 119.7 (7) | N2B—C9B—C10B | 124.8 (7) |
| N2A—C9A—C14A | 113.6 (7) | C14B—C9B—C10B | 119.3 (7) |
| C9A—C10A—C11A | 119.2 (7) | C11B—C10B—C9B | 118.8 (8) |
| C9A—C10A—H10A | 120.4 | C11B—C10B—H10B | 120.6 |
| C11A—C10A—H10A | 120.4 | C9B—C10B—H10B | 120.6 |
| C10A—C11A—C12A | 121.2 (8) | C10B—C11B—C12B | 120.8 (8) |
| C10A—C11A—H11A | 119.4 | C10B—C11B—H11B | 119.6 |
| C12A—C11A—H11A | 119.4 | C12B—C11B—H11B | 119.6 |
| O2A—C12A—C13A | 123.1 (7) | O2B—C12B—C13B | 125.1 (7) |
| O2A—C12A—C11A | 115.8 (7) | O2B—C12B—C11B | 114.2 (7) |
| C13A—C12A—C11A | 121.1 (7) | C13B—C12B—C11B | 120.7 (7) |
| C12A—C13A—C14A | 117.8 (7) | C12B—C13B—C14B | 117.3 (7) |
| C12A—C13A—H13A | 121.1 | C12B—C13B—H13B | 121.4 |
| C14A—C13A—H13A | 121.1 | C14B—C13B—H13B | 121.4 |
| C13A—C14A—C9A | 120.8 (7) | C9B—C14B—C13B | 123.0 (7) |
| C13A—C14A—S1A | 128.5 (6) | C9B—C14B—S1B | 109.6 (6) |
| C9A—C14A—S1A | 110.5 (6) | C13B—C14B—S1B | 127.4 (6) |
| O2A—C15A—H15A | 109.5 | O2B—C15B—H15D | 109.5 |
| O2A—C15A—H15B | 109.5 | O2B—C15B—H15E | 109.5 |
| H15A—C15A—H15B | 109.5 | H15D—C15B—H15E | 109.5 |
| O2A—C15A—H15C | 109.5 | O2B—C15B—H15F | 109.5 |
| H15A—C15A—H15C | 109.5 | H15D—C15B—H15F | 109.5 |
| H15B—C15A—H15C | 109.5 | H15E—C15B—H15F | 109.5 |
| O1A—C1A—C2A—C3A | −179.9 (7) | O1B—C1B—C2B—C3B | 178.6 (6) |
| C6A—C1A—C2A—C3A | 0.7 (11) | C6B—C1B—C2B—C3B | −1.5 (11) |
| C1A—C2A—C3A—C4A | 0.6 (12) | C1B—C2B—C3B—C4B | 1.1 (11) |
| C2A—C3A—C4A—C5A | −3.6 (12) | C2B—C3B—C4B—C5B | −0.1 (12) |
| C3A—C4A—C5A—C6A | 5.3 (12) | C3B—C4B—C5B—C6B | −0.6 (11) |
| O1A—C1A—C6A—C5A | −178.4 (7) | C4B—C5B—C6B—C1B | 0.2 (10) |
| C2A—C1A—C6A—C5A | 1.0 (11) | C4B—C5B—C6B—C7B | −176.6 (6) |
| O1A—C1A—C6A—C7A | −0.1 (11) | O1B—C1B—C6B—C5B | −179.3 (6) |
| C2A—C1A—C6A—C7A | 179.3 (7) | C2B—C1B—C6B—C5B | 0.9 (10) |
| C4A—C5A—C6A—C1A | −4.0 (11) | O1B—C1B—C6B—C7B | −2.5 (10) |
| C4A—C5A—C6A—C7A | 177.6 (7) | C2B—C1B—C6B—C7B | 177.6 (6) |
| C8A—N1A—C7A—C6A | 179.3 (6) | C8B—N1B—C7B—C6B | −178.6 (6) |
| C1A—C6A—C7A—N1A | 2.9 (11) | C5B—C6B—C7B—N1B | 177.4 (6) |
| C5A—C6A—C7A—N1A | −178.8 (7) | C1B—C6B—C7B—N1B | 0.7 (10) |
| C9A—N2A—C8A—N1A | 179.1 (7) | C9B—N2B—C8B—N1B | 179.2 (7) |
| C9A—N2A—C8A—S1A | −2.8 (8) | C9B—N2B—C8B—S1B | −0.3 (8) |
| C7A—N1A—C8A—N2A | −7.7 (11) | C7B—N1B—C8B—N2B | −4.1 (11) |
| C7A—N1A—C8A—S1A | 174.3 (5) | C7B—N1B—C8B—S1B | 175.5 (5) |
| C14A—S1A—C8A—N2A | 1.2 (6) | C14B—S1B—C8B—N2B | 0.4 (6) |
| C14A—S1A—C8A—N1A | 179.5 (6) | C14B—S1B—C8B—N1B | −179.2 (6) |
| C8A—N2A—C9A—C10A | −178.8 (7) | C8B—N2B—C9B—C14B | 0.0 (9) |
| C8A—N2A—C9A—C14A | 3.3 (9) | C8B—N2B—C9B—C10B | −179.3 (7) |
| N2A—C9A—C10A—C11A | 179.6 (7) | N2B—C9B—C10B—C11B | −178.8 (7) |
| C14A—C9A—C10A—C11A | −2.7 (11) | C14B—C9B—C10B—C11B | 2.0 (11) |
| C9A—C10A—C11A—C12A | 0.6 (11) | C9B—C10B—C11B—C12B | −0.7 (11) |
| C15A—O2A—C12A—C13A | 4.5 (10) | C15B—O2B—C12B—C13B | 2.6 (10) |
| C15A—O2A—C12A—C11A | −177.6 (6) | C15B—O2B—C12B—C11B | −178.0 (6) |
| C10A—C11A—C12A—O2A | −177.3 (6) | C10B—C11B—C12B—O2B | 179.9 (7) |
| C10A—C11A—C12A—C13A | 0.5 (11) | C10B—C11B—C12B—C13B | −0.6 (11) |
| O2A—C12A—C13A—C14A | 178.2 (6) | O2B—C12B—C13B—C14B | 179.9 (6) |
| C11A—C12A—C13A—C14A | 0.5 (10) | C11B—C12B—C13B—C14B | 0.5 (10) |
| C12A—C13A—C14A—C9A | −2.6 (10) | N2B—C9B—C14B—C13B | 178.5 (6) |
| C12A—C13A—C14A—S1A | −177.6 (6) | C10B—C9B—C14B—C13B | −2.2 (11) |
| C10A—C9A—C14A—C13A | 3.8 (10) | N2B—C9B—C14B—S1B | 0.3 (8) |
| N2A—C9A—C14A—C13A | −178.3 (6) | C10B—C9B—C14B—S1B | 179.6 (6) |
| C10A—C9A—C14A—S1A | 179.6 (6) | C12B—C13B—C14B—C9B | 0.9 (10) |
| N2A—C9A—C14A—S1A | −2.4 (8) | C12B—C13B—C14B—S1B | 178.8 (5) |
| C8A—S1A—C14A—C13A | 176.1 (7) | C8B—S1B—C14B—C9B | −0.4 (5) |
| C8A—S1A—C14A—C9A | 0.7 (5) | C8B—S1B—C14B—C13B | −178.5 (6) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1A—H1A···N1A | 0.84 | 1.93 | 2.647 (9) | 143 |
| C13A—H13A···O1B | 0.95 | 2.48 | 3.289 (9) | 144 |
| C15A—H15A···N2Bi | 0.98 | 2.57 | 3.525 (10) | 166 |
| O1B—H1B···N1B | 0.84 | 1.89 | 2.636 (9) | 147 |
| C13B—H13B···O1A | 0.95 | 2.53 | 3.356 (10) | 145 |
Symmetry code: (i) −x+3/2, y−3/2, z−1/2.
References
- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Asiri, A. M., Khan, S. A., Marwani, H. M. & Sharma, K. (2013). J. Photochem. Photobiol. B, 120, 82–89. [DOI] [PubMed]
- Catalano, A., Carocci, A., Defrenza, I., Muraglia, M., Carrieri, A., Van Bambeke, F., Rosato, A., Corbo, F. & Franchini, C. (2013). Eur. J. Med. Chem. 64, 357–364. [DOI] [PubMed]
- El’tsov, O. S. & Mokrushin, V. S. (2002). Russ. Chem. Bull. 51, 547–549.
- Funderburk, W. H., King, E. E., Domino, E. F. & Unna, K. R. (1953). J. Pharmacol. Exp. Ther. 107, 356–367. [PubMed]
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
- Havrylyuk, D., Mosula, L., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Eur. J. Med. Chem. 45, 5012–5021. [DOI] [PubMed]
- Hijji, Y. M. & Wairia, G. (2005). Proceedings of SPIE-The International Society for Optical Engineering 60070B, pp. 1–12.
- Kong, L.-Q. (2009). Acta Cryst. E65, o832. [DOI] [PMC free article] [PubMed]
- Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393–396.
- Liu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738. [DOI] [PMC free article] [PubMed]
- Mahajan, D. P., Bhosale, J. D. & Bendre, R. S. (2013). J. Appl. Chem. 2, 765–771.
- Murhekar, M. M. & Khadsan, R. E. (2010). Pharma Chem. 2, 219–223.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
- Quraishi, M. A., Khan, M. A. W., Ajmal, M., Muralidharan, S. & Iyer, S. V. (1997). Corrosion, 53, 475–480.
- Ravi, M., Ushaiah, B., Sujitha, P., Kudle, R. K. & Devi, C. S. (2014). Int. J. Pharm. Pharm. Sci. Vol. 6, Suppl 2, 637.
- Rawat, J. & Quraishi, M. A. (2003). Corrosion, 59, 238–241.
- Sarhan, A. A. O., Al-Dhfyan, A., Al-Mozaini, M. A., Adra, C. N. & Aboul-Fadl, T. (2010). Eur. J. Med. Chem. 45, 2689–2694. [DOI] [PubMed]
- Sharma, R. C., Singh, S., Vats, R. & Agarwal, S. (2002). J. Inst. Chem. (India), 74, 188–190.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
- Shi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384. [DOI] [PubMed]
- Smith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Healy, P. C. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703.
- Song, S., Song, M., Zhang, H. & Yang, L. (2010). Huaxue Yanjiu, 21, 21–25.
- Tahiliani, H., Jaisinghani, N. & Ojha, K. G. (2003). Indian J. Chem. Sect. B, 42, 171–174.
- Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989015005228/hg5435Isup3.cml
CCDC reference: 1053989
Additional supporting information: crystallographic information; 3D view; checkCIF report


