Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Mar 21;71(Pt 4):385–387. doi: 10.1107/S2056989015005228

Crystal structure of (E)-2-{[(6-meth­oxy-1,3-benzo­thia­zol-2-yl)imino]­meth­yl}phenol

Yousef Hijji a, Belygona Barare b, Gilbert Wairia b, Ray J Butcher c,*, Jan Wikaira d
PMCID: PMC4438847  PMID: 26029397

The title compound crystallizes with two mol­ecules in the asymmetric unit (Z′ = 2) which are linked into dimers by Inline graphic(20) C—H⋯O inter­actions. These dimers are further linked into sheets in the ab plane by weak inter­molecular C—H⋯N inter­actions.

Keywords: crystal structure, amino­benzo­thia­zole derivatives, amino­thia­zole Schiff bases, hydrogen bonding

Abstract

The title compound, C15H12N2O2S, crystallizes in the ortho­rhom­bic space group Pna21, with two mol­ecules in the asymmetric unit (Z′ = 2). Each mol­ecule consists of a 2-hy­droxy Schiff base moiety linked through a spacer to a 2-amino­benzo­thia­zole moiety. Each mol­ecule contains an intra­molecular hydrogen bond between the –OH group and imine N atom, forming a six-membered ring. The two independent molecules are linked by a pair of C—H⋯O hydrogen bonds, forming dimers with an R 2 2(20) ring motif. These dimers are further lined into sheets in the ab plane by weak inter­molecular C—H⋯N inter­actions. The structure was refined as an inversion twin

Chemical context  

A wide range of biological activities have been attributed to amino­thia­zoles and compounds having similar structures (Tahiliani et al., 2003) and they have many applications in both human and veterinary medicine (Smith et al., 1999; Sarhan et al., 2010). Certain 2-amino­benzo­thia­zole derivatives act on the central nervous system (Funderburk et al., 1953), possess anti­microbial (Murhekar & Khadsan, 2010; Ravi et al., 2014), anti­fungal (Catalano et al., 2013) and anti­bacterial properties (Asiri et al., 2013), serve as selective receptors for anion sensing (Hijji & Wairia, 2005), are active in corrosion inhibition (Quraishi et al., 1997; Rawat & Quraishi, 2003) and act as plant-growth regulators (Mahajan et al., 2013). In addition, some metal complexes of Schiff bases of 2-amino­benzo­thia­zole derivatives have potent anti­bacterial properties (Sharma et al., 2002; Song et al., 2010). Among anti­tumor agents discovered in recent years, the identification of various 2-(4-amino­phen­yl)benzo­thia­zoles as potent and selective anti­tumor drugs against breast, ovarian, colon and renal cell lines has stimulated remarkable inter­est (Usman et al., 2003; Shi et al., 1996; Havrylyuk et al. 2010) in this class of compound from both a synthetic, and particularly, a structural point of view. Amino­thia­zole Schiff bases have been prepared as inter­mediate ligands and for complexation with various metals (Liang et al.,1999; Liu et al., 2009).graphic file with name e-71-00385-scheme1.jpg

In this context, the synthesis and structural characterization of new 2-amino­benzo­thia­zole Schiff base derivatives is of inter­est (El’tsov & Mokrushin, 2002).

Structural commentary  

The title compound, C15H12N2O2S, crystallizes in the ortho­rhom­bic space group, Pna21, with two mol­ecules (A and B) in the asymmetric unit (Z′ = 2). Each mol­ecule consists of a 2-hy­droxy Schiff base moiety linked through a spacer to a 2-amino­benzo­thia­zole moiety. This spacer is both planar [r.m.s. deviations of fitted atoms of 0.004 (3) and 0.007 (3) Å, respectively for mol­ecules A and B] and very close to coplanar with both the Schiff base and 2-amino­benzo­thia­zole end moieties [making dihedral angles of 2.6 (9) and 4.0 (3)°, respectively, in mol­ecule A and 3.3 (8) and 3.9 (7)° in mol­ecule B]. The mol­ecules themselves are very close to planar, as is shown by the dihedral angles of 4.0 (3) and 6.3 (2) between the two end groups for mol­ecules A and B, respectively. Each mol­ecule contains an intra­molecular hydrogen bond between the OH group and imine N atom, forming a six-membered ring.

Supra­molecular features  

In addition to the intra­molecular hydrogen bond mentioned above, the mol­ecules are linked by a pair of C—H⋯O hydrogen bonds (Table 1), forming dimers with an Inline graphic(20) ring motif, as shown in Fig. 1. These dimers are further linked into sheets in the ab plane by weak inter­molecular C—H⋯N inter­actions involving C15 and N2B, as shown in Fig. 2.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1AH1AN1A 0.84 1.93 2.647(9) 143
C13AH13AO1B 0.95 2.48 3.289(9) 144
C15AH15AN2B i 0.98 2.57 3.525(10) 166
O1BH1BN1B 0.84 1.89 2.636(9) 147
C13BH13BO1A 0.95 2.53 3.356(10) 145

Symmetry code: (i) Inline graphic.

Figure 1.

Figure 1

Mol­ecular diagram for mol­ecules A and B of the title compound, showing the atom labeling. Displacement parameters are drawn at the 30% probability level. The diagram shows the two mol­ecules (A and B) linked into dimers by Inline graphic(20) C—H⋯O hydrogen bonds (dashed lines; see Table 1 for details).

Figure 2.

Figure 2

Packing diagram, viewed along the b axis, showing a sheet of Inline graphic(20) C—H⋯O-linked dimers in the ac plane.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.35, last update November 2014; Groom & Allen, 2014) for related Schiff base derivatives of 2-amino­benzo­thia­zole gave 23 hits of which the closest example to the title compound was (E)-2-[(6-eth­oxy­benzo­thia­zol-2-yl)imino­meth­yl]-6-meth­oxy­phenol (Kong, 2009).

Synthesis and crystallization  

A mixture of 0.505 g (4.10 mmol) salicyl­aldehyde and 0.746 g (4.10 mmol) 2-amino-6-meth­oxy­benzo­thio­zole was dissolved in 2 ml of aceto­nitrile in a vial. The mixture was reacted in a Biotage initiator eight mono mode microwave at 423 K for 2 min and then allowed to cool for 15 min. The resulting product was recrystallized from aceto­nitrile, filtered and then vacuum dried to afford 0.971 g (86% yield) of a yellow crystalline solid (m.p. 399–403 K). A sample was dissolved in ethanol and allowed to crystallize by slow evaporation to give yellow needles used for X-ray structural determination.

1H NMR (300 MHz, CDCl3): δ 12.07 (s, 1H), 9.36 (s, 1H), 8.81 (dd, J = 9.0, 2.5 Hz, 1H), 8.39 (d, J = 7.5 Hz, 1H), 8.05 (d, J = 9.0 Hz. 1H), 7.55 (m, 2H), 7.09 (d, 7.5 Hz, 1H), 7.04 (t, J = 7.5 Hz, 1H), 3.83 (s, 3H)

13C NMR (300 MHz, CDCl3, p.p.m.): δ 55.07, 105.07, 115.46, 118.4, 121.2, 122.88, 125.26, 130.4, 132.44, 135.07, 145.59, 157.8 162.69, 165.36, 169.49

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bound H atoms were positioned geometrically and refined as riding: C–H = 0.93–0.99 Å with Uiso(H) = 1.5U eq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. Phenol H atoms were located in a difference Fourier map and then refined as riding on their attached O atoms.

Table 2. Experimental details.

Crystal data
Chemical formula C15H12N2O2S
M r 284.33
Crystal system, space group Orthorhombic, P n a21
Temperature (K) 120
a, b, c () 35.623(2), 3.8172(2), 18.6525(8)
V (3) 2536.4(2)
Z 8
Radiation type Cu K
(mm1) 2.30
Crystal size (mm) 0.38 0.09 0.06
 
Data collection
Diffractometer Agilent SuperNova (Dual, Cu at zero, Atlas)
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.573, 0.863
No. of measured, independent and observed [I > 2(I)] reflections 6990, 3895, 3677
R int 0.045
(sin /)max (1) 0.630
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.073, 0.189, 1.09
No. of reflections 3895
No. of parameters 364
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 1.01, 0.74
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.65(5)

Computer programs: CrysAlis PRO (Agilent, 2012), SUPERFLIP (Palatinus et al., 2007), SHELXL2013 (Sheldrick, 2015) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435sup1.cif

e-71-00385-sup1.cif (258.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435Isup2.hkl

e-71-00385-Isup2.hkl (213.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015005228/hg5435Isup3.cml

CCDC reference: 1053989

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

RJB wishes to acknowledge the assistance of the Department of Chemistry at the University of Canterbury, New Zealand, in allowing access to their diffractometer during his visit in 2014. YH would like to thank support from the Qatar National Research Fund Grant No. NPRP 7–495-1–094.

supplementary crystallographic information

Crystal data

C15H12N2O2S Dx = 1.489 Mg m3
Mr = 284.33 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, Pna21 Cell parameters from 2917 reflections
a = 35.623 (2) Å θ = 4.7–76.1°
b = 3.8172 (2) Å µ = 2.30 mm1
c = 18.6525 (8) Å T = 120 K
V = 2536.4 (2) Å3 Needle, yellow–orange
Z = 8 0.38 × 0.09 × 0.06 mm
F(000) = 1184

Data collection

Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer 3895 independent reflections
Radiation source: sealed X-ray tube 3677 reflections with I > 2σ(I)
Detector resolution: 5.3250 pixels mm-1 Rint = 0.045
ω scans θmax = 76.2°, θmin = 3.4°
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) h = −41→44
Tmin = 0.573, Tmax = 0.863 k = −2→4
6990 measured reflections l = −20→23

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.073 w = 1/[σ2(Fo2) + (0.0845P)2 + 6.6687P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.189 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 1.01 e Å3
3895 reflections Δρmin = −0.74 e Å3
364 parameters Absolute structure: Refined as an inversion twin.
1 restraint Absolute structure parameter: 0.65 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1A 0.87402 (5) 0.3471 (4) 0.32176 (9) 0.0241 (4)
O1A 0.97069 (15) 0.6508 (16) 0.4723 (3) 0.0337 (13)
H1A 0.9559 0.6313 0.4376 0.050*
O2A 0.78912 (15) −0.1334 (15) 0.1150 (3) 0.0283 (12)
N1A 0.94790 (18) 0.3743 (16) 0.3497 (4) 0.0250 (13)
N2A 0.92781 (17) 0.1374 (18) 0.2372 (4) 0.0283 (13)
C1A 1.0055 (2) 0.5657 (19) 0.4512 (4) 0.0261 (15)
C2A 1.0359 (2) 0.648 (2) 0.4958 (4) 0.0306 (16)
H1 1.0314 0.7620 0.5402 0.037*
C3A 1.0718 (2) 0.568 (2) 0.4768 (4) 0.0318 (17)
H2 1.0919 0.6241 0.5082 0.038*
C4A 1.0793 (2) 0.403 (2) 0.4114 (5) 0.0274 (15)
H3 1.1045 0.3592 0.3970 0.033*
C5A 1.0495 (2) 0.303 (2) 0.3674 (4) 0.0274 (16)
H4 1.0542 0.1730 0.3249 0.033*
C6A 1.0126 (2) 0.394 (2) 0.3862 (4) 0.0274 (16)
C7A 0.9824 (2) 0.2951 (18) 0.3370 (4) 0.0238 (15)
H5 0.9884 0.1694 0.2946 0.029*
C8A 0.9213 (2) 0.2730 (17) 0.2996 (4) 0.0225 (14)
C9A 0.89431 (19) 0.0635 (19) 0.2017 (4) 0.0237 (14)
C10A 0.8905 (2) −0.087 (2) 0.1348 (4) 0.0265 (15)
H10A 0.9120 −0.1510 0.1078 0.032*
C11A 0.8548 (2) −0.1449 (19) 0.1075 (4) 0.0264 (16)
H11A 0.8521 −0.2508 0.0617 0.032*
C12A 0.8227 (2) −0.0498 (17) 0.1462 (4) 0.0212 (14)
C13A 0.8255 (2) 0.1077 (19) 0.2129 (4) 0.0254 (15)
H13A 0.8037 0.1706 0.2392 0.031*
C14A 0.8617 (2) 0.1715 (18) 0.2403 (4) 0.0240 (14)
C15A 0.75623 (19) −0.027 (2) 0.1521 (5) 0.0289 (16)
H15A 0.7340 −0.1033 0.1254 0.043*
H15B 0.7560 0.2289 0.1566 0.043*
H15C 0.7560 −0.1328 0.2000 0.043*
S1B 0.87656 (5) 0.8509 (4) 0.49182 (9) 0.0246 (4)
O1B 0.78077 (16) 0.5412 (16) 0.3390 (3) 0.0361 (14)
H1B 0.7960 0.6119 0.3701 0.054*
O2B 0.95964 (15) 1.3166 (15) 0.7026 (3) 0.0293 (12)
N1B 0.80272 (18) 0.8089 (15) 0.4624 (4) 0.0247 (13)
N2B 0.82255 (17) 1.0626 (16) 0.5746 (4) 0.0263 (13)
C1B 0.7453 (2) 0.5753 (18) 0.3644 (4) 0.0248 (15)
C2B 0.7160 (2) 0.4583 (19) 0.3210 (5) 0.0291 (15)
H6 0.7209 0.3632 0.2749 0.035*
C3B 0.6790 (2) 0.484 (2) 0.3472 (4) 0.0299 (17)
H7 0.6587 0.4020 0.3187 0.036*
C4B 0.6717 (2) 0.628 (2) 0.4136 (4) 0.0287 (16)
H8 0.6466 0.6431 0.4301 0.034*
C5B 0.7005 (2) 0.7494 (18) 0.4564 (4) 0.0243 (15)
H9 0.6950 0.8494 0.5019 0.029*
C6B 0.7381 (2) 0.7258 (16) 0.4329 (4) 0.0204 (14)
C7B 0.7681 (2) 0.8352 (17) 0.4793 (4) 0.0245 (15)
H10 0.7618 0.9319 0.5247 0.029*
C8B 0.8289 (2) 0.9165 (19) 0.5123 (4) 0.0252 (15)
C9B 0.8560 (2) 1.1290 (19) 0.6098 (4) 0.0253 (15)
C10B 0.8589 (2) 1.2798 (19) 0.6777 (4) 0.0262 (16)
H10B 0.8370 1.3415 0.7040 0.031*
C11B 0.8943 (2) 1.3379 (19) 0.7062 (5) 0.0261 (15)
H11B 0.8967 1.4428 0.7522 0.031*
C12B 0.9269 (2) 1.2432 (18) 0.6678 (5) 0.0252 (16)
C13B 0.9242 (2) 1.0870 (17) 0.6009 (4) 0.0246 (14)
H13B 0.9460 1.0207 0.5748 0.029*
C14B 0.8884 (2) 1.0313 (17) 0.5736 (4) 0.0234 (14)
C15B 0.9936 (2) 1.235 (2) 0.6643 (5) 0.0288 (16)
H15D 1.0149 1.3469 0.6882 0.043*
H15E 0.9916 1.3226 0.6150 0.043*
H15F 0.9972 0.9808 0.6635 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1A 0.0280 (8) 0.0261 (8) 0.0182 (9) −0.0016 (6) −0.0003 (7) −0.0049 (7)
O1A 0.029 (3) 0.044 (3) 0.028 (3) −0.005 (2) 0.000 (2) 0.001 (3)
O2A 0.031 (3) 0.031 (3) 0.023 (3) −0.003 (2) −0.002 (2) −0.004 (2)
N1A 0.032 (3) 0.021 (3) 0.022 (3) −0.002 (2) −0.002 (3) −0.006 (2)
N2A 0.032 (3) 0.033 (3) 0.020 (3) −0.007 (2) −0.003 (3) 0.001 (3)
C1A 0.033 (4) 0.025 (3) 0.020 (4) −0.006 (3) −0.003 (3) 0.006 (3)
C2A 0.040 (4) 0.034 (4) 0.018 (4) −0.015 (3) −0.002 (3) 0.002 (3)
C3A 0.039 (4) 0.033 (4) 0.024 (4) −0.007 (3) −0.008 (3) 0.009 (3)
C4A 0.027 (3) 0.026 (3) 0.030 (4) 0.004 (3) 0.001 (3) 0.002 (3)
C5A 0.038 (4) 0.030 (4) 0.014 (4) −0.001 (3) −0.001 (3) 0.000 (3)
C6A 0.034 (4) 0.025 (3) 0.023 (4) −0.002 (3) 0.000 (3) 0.004 (3)
C7A 0.037 (4) 0.022 (3) 0.012 (3) −0.003 (3) 0.000 (3) 0.003 (3)
C8A 0.034 (4) 0.017 (3) 0.017 (4) 0.000 (2) 0.002 (3) −0.004 (2)
C9A 0.028 (3) 0.027 (3) 0.016 (3) −0.004 (3) 0.001 (3) 0.007 (3)
C10A 0.030 (3) 0.028 (4) 0.022 (4) 0.003 (3) 0.003 (3) −0.002 (3)
C11A 0.041 (4) 0.021 (3) 0.016 (4) −0.008 (3) 0.000 (3) 0.003 (3)
C12A 0.032 (3) 0.014 (3) 0.018 (3) −0.004 (2) −0.003 (3) 0.004 (3)
C13A 0.030 (3) 0.027 (4) 0.019 (3) 0.002 (3) 0.004 (3) 0.004 (3)
C14A 0.033 (3) 0.016 (3) 0.023 (4) −0.005 (3) 0.003 (3) 0.005 (3)
C15A 0.025 (3) 0.029 (3) 0.033 (4) −0.003 (3) −0.002 (3) −0.005 (3)
S1B 0.0291 (9) 0.0271 (8) 0.0177 (9) 0.0008 (6) −0.0003 (6) −0.0047 (7)
O1B 0.033 (3) 0.046 (3) 0.029 (3) −0.001 (2) 0.002 (2) −0.013 (3)
O2B 0.029 (3) 0.036 (3) 0.022 (3) 0.004 (2) −0.001 (2) −0.001 (2)
N1B 0.032 (3) 0.020 (3) 0.022 (3) 0.002 (2) −0.004 (3) 0.002 (2)
N2B 0.034 (3) 0.020 (3) 0.024 (3) −0.002 (2) −0.004 (3) −0.003 (3)
C1B 0.033 (4) 0.018 (3) 0.023 (4) 0.001 (3) −0.003 (3) 0.002 (3)
C2B 0.040 (4) 0.029 (3) 0.018 (4) 0.000 (3) 0.000 (3) 0.003 (3)
C3B 0.036 (4) 0.028 (4) 0.026 (4) −0.002 (3) −0.010 (3) 0.009 (3)
C4B 0.030 (4) 0.030 (4) 0.026 (4) 0.000 (3) 0.003 (3) 0.002 (3)
C5B 0.031 (4) 0.020 (3) 0.022 (4) 0.001 (3) 0.003 (3) 0.003 (3)
C6B 0.029 (3) 0.012 (3) 0.021 (4) 0.001 (2) −0.002 (3) 0.004 (3)
C7B 0.040 (4) 0.014 (3) 0.019 (4) −0.003 (2) −0.003 (3) 0.009 (3)
C8B 0.028 (4) 0.022 (3) 0.025 (4) 0.002 (3) 0.001 (3) 0.000 (3)
C9B 0.033 (3) 0.019 (3) 0.024 (4) −0.004 (2) −0.001 (3) −0.001 (3)
C10B 0.040 (4) 0.017 (3) 0.021 (4) 0.001 (3) 0.005 (3) −0.002 (3)
C11B 0.033 (4) 0.021 (3) 0.024 (4) −0.002 (3) 0.000 (3) −0.002 (3)
C12B 0.033 (4) 0.014 (3) 0.028 (4) −0.004 (2) −0.003 (3) 0.002 (3)
C13B 0.033 (3) 0.018 (3) 0.023 (4) 0.002 (3) 0.003 (3) 0.006 (3)
C14B 0.045 (4) 0.014 (3) 0.011 (3) 0.000 (3) 0.003 (3) 0.006 (2)
C15B 0.040 (4) 0.025 (3) 0.021 (4) −0.002 (3) −0.004 (3) 0.001 (3)

Geometric parameters (Å, º)

S1A—C14A 1.718 (8) S1B—C14B 1.726 (8)
S1A—C8A 1.759 (8) S1B—C8B 1.758 (8)
O1A—C1A 1.341 (10) O1B—C1B 1.356 (9)
O1A—H1A 0.8399 O1B—H1B 0.8400
O2A—C12A 1.369 (9) O2B—C12B 1.364 (9)
O2A—C15A 1.421 (9) O2B—C15B 1.438 (10)
N1A—C7A 1.288 (10) N1B—C7B 1.278 (10)
N1A—C8A 1.385 (10) N1B—C8B 1.380 (10)
N2A—C8A 1.295 (10) N2B—C8B 1.309 (10)
N2A—C9A 1.393 (9) N2B—C9B 1.383 (9)
C1A—C6A 1.402 (11) C1B—C2B 1.395 (11)
C1A—C2A 1.402 (11) C1B—C6B 1.424 (10)
C2A—C3A 1.362 (12) C2B—C3B 1.409 (11)
C2A—H1 0.9500 C2B—H6 0.9500
C3A—C4A 1.398 (12) C3B—C4B 1.378 (12)
C3A—H2 0.9500 C3B—H7 0.9500
C4A—C5A 1.395 (11) C4B—C5B 1.381 (11)
C4A—H3 0.9500 C4B—H8 0.9500
C5A—C6A 1.405 (12) C5B—C6B 1.412 (10)
C5A—H4 0.9500 C5B—H9 0.9500
C6A—C7A 1.463 (11) C6B—C7B 1.435 (10)
C7A—H5 0.9500 C7B—H10 0.9500
C9A—C10A 1.382 (11) C9B—C14B 1.388 (11)
C9A—C14A 1.428 (10) C9B—C10B 1.396 (11)
C10A—C11A 1.385 (11) C10B—C11B 1.388 (12)
C10A—H10A 0.9500 C10B—H10B 0.9500
C11A—C12A 1.401 (11) C11B—C12B 1.410 (11)
C11A—H11A 0.9500 C11B—H11B 0.9500
C12A—C13A 1.385 (11) C12B—C13B 1.387 (11)
C13A—C14A 1.407 (10) C13B—C14B 1.391 (11)
C13A—H13A 0.9500 C13B—H13B 0.9500
C15A—H15A 0.9800 C15B—H15D 0.9800
C15A—H15B 0.9800 C15B—H15E 0.9800
C15A—H15C 0.9800 C15B—H15F 0.9800
C14A—S1A—C8A 88.5 (4) C14B—S1B—C8B 89.2 (4)
C1A—O1A—H1A 109.5 C1B—O1B—H1B 109.3
C12A—O2A—C15A 116.6 (6) C12B—O2B—C15B 116.0 (6)
C7A—N1A—C8A 117.5 (6) C7B—N1B—C8B 117.6 (7)
C8A—N2A—C9A 110.8 (6) C8B—N2B—C9B 110.5 (6)
O1A—C1A—C6A 122.3 (7) O1B—C1B—C2B 117.6 (7)
O1A—C1A—C2A 119.1 (7) O1B—C1B—C6B 121.3 (6)
C6A—C1A—C2A 118.6 (7) C2B—C1B—C6B 121.1 (7)
C3A—C2A—C1A 121.4 (8) C1B—C2B—C3B 118.4 (8)
C3A—C2A—H1 119.3 C1B—C2B—H6 120.8
C1A—C2A—H1 119.3 C3B—C2B—H6 120.8
C2A—C3A—C4A 120.5 (7) C4B—C3B—C2B 121.0 (7)
C2A—C3A—H2 119.8 C4B—C3B—H7 119.5
C4A—C3A—H2 119.8 C2B—C3B—H7 119.5
C5A—C4A—C3A 119.4 (7) C3B—C4B—C5B 120.9 (7)
C5A—C4A—H3 120.3 C3B—C4B—H8 119.5
C3A—C4A—H3 120.3 C5B—C4B—H8 119.5
C4A—C5A—C6A 119.9 (7) C4B—C5B—C6B 120.2 (7)
C4A—C5A—H4 120.1 C4B—C5B—H9 119.9
C6A—C5A—H4 120.1 C6B—C5B—H9 119.9
C1A—C6A—C5A 120.0 (7) C5B—C6B—C1B 118.3 (7)
C1A—C6A—C7A 122.1 (7) C5B—C6B—C7B 120.0 (7)
C5A—C6A—C7A 117.9 (7) C1B—C6B—C7B 121.6 (7)
N1A—C7A—C6A 121.7 (7) N1B—C7B—C6B 123.1 (7)
N1A—C7A—H5 119.2 N1B—C7B—H10 118.4
C6A—C7A—H5 119.2 C6B—C7B—H10 118.4
N2A—C8A—N1A 126.7 (7) N2B—C8B—N1B 127.5 (7)
N2A—C8A—S1A 116.5 (6) N2B—C8B—S1B 114.9 (6)
N1A—C8A—S1A 116.8 (5) N1B—C8B—S1B 117.6 (6)
C10A—C9A—N2A 126.7 (7) N2B—C9B—C14B 115.8 (7)
C10A—C9A—C14A 119.7 (7) N2B—C9B—C10B 124.8 (7)
N2A—C9A—C14A 113.6 (7) C14B—C9B—C10B 119.3 (7)
C9A—C10A—C11A 119.2 (7) C11B—C10B—C9B 118.8 (8)
C9A—C10A—H10A 120.4 C11B—C10B—H10B 120.6
C11A—C10A—H10A 120.4 C9B—C10B—H10B 120.6
C10A—C11A—C12A 121.2 (8) C10B—C11B—C12B 120.8 (8)
C10A—C11A—H11A 119.4 C10B—C11B—H11B 119.6
C12A—C11A—H11A 119.4 C12B—C11B—H11B 119.6
O2A—C12A—C13A 123.1 (7) O2B—C12B—C13B 125.1 (7)
O2A—C12A—C11A 115.8 (7) O2B—C12B—C11B 114.2 (7)
C13A—C12A—C11A 121.1 (7) C13B—C12B—C11B 120.7 (7)
C12A—C13A—C14A 117.8 (7) C12B—C13B—C14B 117.3 (7)
C12A—C13A—H13A 121.1 C12B—C13B—H13B 121.4
C14A—C13A—H13A 121.1 C14B—C13B—H13B 121.4
C13A—C14A—C9A 120.8 (7) C9B—C14B—C13B 123.0 (7)
C13A—C14A—S1A 128.5 (6) C9B—C14B—S1B 109.6 (6)
C9A—C14A—S1A 110.5 (6) C13B—C14B—S1B 127.4 (6)
O2A—C15A—H15A 109.5 O2B—C15B—H15D 109.5
O2A—C15A—H15B 109.5 O2B—C15B—H15E 109.5
H15A—C15A—H15B 109.5 H15D—C15B—H15E 109.5
O2A—C15A—H15C 109.5 O2B—C15B—H15F 109.5
H15A—C15A—H15C 109.5 H15D—C15B—H15F 109.5
H15B—C15A—H15C 109.5 H15E—C15B—H15F 109.5
O1A—C1A—C2A—C3A −179.9 (7) O1B—C1B—C2B—C3B 178.6 (6)
C6A—C1A—C2A—C3A 0.7 (11) C6B—C1B—C2B—C3B −1.5 (11)
C1A—C2A—C3A—C4A 0.6 (12) C1B—C2B—C3B—C4B 1.1 (11)
C2A—C3A—C4A—C5A −3.6 (12) C2B—C3B—C4B—C5B −0.1 (12)
C3A—C4A—C5A—C6A 5.3 (12) C3B—C4B—C5B—C6B −0.6 (11)
O1A—C1A—C6A—C5A −178.4 (7) C4B—C5B—C6B—C1B 0.2 (10)
C2A—C1A—C6A—C5A 1.0 (11) C4B—C5B—C6B—C7B −176.6 (6)
O1A—C1A—C6A—C7A −0.1 (11) O1B—C1B—C6B—C5B −179.3 (6)
C2A—C1A—C6A—C7A 179.3 (7) C2B—C1B—C6B—C5B 0.9 (10)
C4A—C5A—C6A—C1A −4.0 (11) O1B—C1B—C6B—C7B −2.5 (10)
C4A—C5A—C6A—C7A 177.6 (7) C2B—C1B—C6B—C7B 177.6 (6)
C8A—N1A—C7A—C6A 179.3 (6) C8B—N1B—C7B—C6B −178.6 (6)
C1A—C6A—C7A—N1A 2.9 (11) C5B—C6B—C7B—N1B 177.4 (6)
C5A—C6A—C7A—N1A −178.8 (7) C1B—C6B—C7B—N1B 0.7 (10)
C9A—N2A—C8A—N1A 179.1 (7) C9B—N2B—C8B—N1B 179.2 (7)
C9A—N2A—C8A—S1A −2.8 (8) C9B—N2B—C8B—S1B −0.3 (8)
C7A—N1A—C8A—N2A −7.7 (11) C7B—N1B—C8B—N2B −4.1 (11)
C7A—N1A—C8A—S1A 174.3 (5) C7B—N1B—C8B—S1B 175.5 (5)
C14A—S1A—C8A—N2A 1.2 (6) C14B—S1B—C8B—N2B 0.4 (6)
C14A—S1A—C8A—N1A 179.5 (6) C14B—S1B—C8B—N1B −179.2 (6)
C8A—N2A—C9A—C10A −178.8 (7) C8B—N2B—C9B—C14B 0.0 (9)
C8A—N2A—C9A—C14A 3.3 (9) C8B—N2B—C9B—C10B −179.3 (7)
N2A—C9A—C10A—C11A 179.6 (7) N2B—C9B—C10B—C11B −178.8 (7)
C14A—C9A—C10A—C11A −2.7 (11) C14B—C9B—C10B—C11B 2.0 (11)
C9A—C10A—C11A—C12A 0.6 (11) C9B—C10B—C11B—C12B −0.7 (11)
C15A—O2A—C12A—C13A 4.5 (10) C15B—O2B—C12B—C13B 2.6 (10)
C15A—O2A—C12A—C11A −177.6 (6) C15B—O2B—C12B—C11B −178.0 (6)
C10A—C11A—C12A—O2A −177.3 (6) C10B—C11B—C12B—O2B 179.9 (7)
C10A—C11A—C12A—C13A 0.5 (11) C10B—C11B—C12B—C13B −0.6 (11)
O2A—C12A—C13A—C14A 178.2 (6) O2B—C12B—C13B—C14B 179.9 (6)
C11A—C12A—C13A—C14A 0.5 (10) C11B—C12B—C13B—C14B 0.5 (10)
C12A—C13A—C14A—C9A −2.6 (10) N2B—C9B—C14B—C13B 178.5 (6)
C12A—C13A—C14A—S1A −177.6 (6) C10B—C9B—C14B—C13B −2.2 (11)
C10A—C9A—C14A—C13A 3.8 (10) N2B—C9B—C14B—S1B 0.3 (8)
N2A—C9A—C14A—C13A −178.3 (6) C10B—C9B—C14B—S1B 179.6 (6)
C10A—C9A—C14A—S1A 179.6 (6) C12B—C13B—C14B—C9B 0.9 (10)
N2A—C9A—C14A—S1A −2.4 (8) C12B—C13B—C14B—S1B 178.8 (5)
C8A—S1A—C14A—C13A 176.1 (7) C8B—S1B—C14B—C9B −0.4 (5)
C8A—S1A—C14A—C9A 0.7 (5) C8B—S1B—C14B—C13B −178.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1A—H1A···N1A 0.84 1.93 2.647 (9) 143
C13A—H13A···O1B 0.95 2.48 3.289 (9) 144
C15A—H15A···N2Bi 0.98 2.57 3.525 (10) 166
O1B—H1B···N1B 0.84 1.89 2.636 (9) 147
C13B—H13B···O1A 0.95 2.53 3.356 (10) 145

Symmetry code: (i) −x+3/2, y−3/2, z−1/2.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Asiri, A. M., Khan, S. A., Marwani, H. M. & Sharma, K. (2013). J. Photochem. Photobiol. B, 120, 82–89. [DOI] [PubMed]
  3. Catalano, A., Carocci, A., Defrenza, I., Muraglia, M., Carrieri, A., Van Bambeke, F., Rosato, A., Corbo, F. & Franchini, C. (2013). Eur. J. Med. Chem. 64, 357–364. [DOI] [PubMed]
  4. El’tsov, O. S. & Mokrushin, V. S. (2002). Russ. Chem. Bull. 51, 547–549.
  5. Funderburk, W. H., King, E. E., Domino, E. F. & Unna, K. R. (1953). J. Pharmacol. Exp. Ther. 107, 356–367. [PubMed]
  6. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  7. Havrylyuk, D., Mosula, L., Zimenkovsky, B., Vasylenko, O., Gzella, A. & Lesyk, R. (2010). Eur. J. Med. Chem. 45, 5012–5021. [DOI] [PubMed]
  8. Hijji, Y. M. & Wairia, G. (2005). Proceedings of SPIE-The International Society for Optical Engineering 60070B, pp. 1–12.
  9. Kong, L.-Q. (2009). Acta Cryst. E65, o832. [DOI] [PMC free article] [PubMed]
  10. Liang, F.-Z., Du, M.-R., Shen, J.-C. & Xi, H. (1999). Chin. J. Inorg. Chem. 15, 393–396.
  11. Liu, S.-Q., Bi, C.-F., Chen, L.-Y. & Fan, Y.-H. (2009). Acta Cryst. E65, o738. [DOI] [PMC free article] [PubMed]
  12. Mahajan, D. P., Bhosale, J. D. & Bendre, R. S. (2013). J. Appl. Chem. 2, 765–771.
  13. Murhekar, M. M. & Khadsan, R. E. (2010). Pharma Chem. 2, 219–223.
  14. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  15. Quraishi, M. A., Khan, M. A. W., Ajmal, M., Muralidharan, S. & Iyer, S. V. (1997). Corrosion, 53, 475–480.
  16. Ravi, M., Ushaiah, B., Sujitha, P., Kudle, R. K. & Devi, C. S. (2014). Int. J. Pharm. Pharm. Sci. Vol. 6, Suppl 2, 637.
  17. Rawat, J. & Quraishi, M. A. (2003). Corrosion, 59, 238–241.
  18. Sarhan, A. A. O., Al-Dhfyan, A., Al-Mozaini, M. A., Adra, C. N. & Aboul-Fadl, T. (2010). Eur. J. Med. Chem. 45, 2689–2694. [DOI] [PubMed]
  19. Sharma, R. C., Singh, S., Vats, R. & Agarwal, S. (2002). J. Inst. Chem. (India), 74, 188–190.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  22. Shi, D.-F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). J. Med. Chem. 39, 3375–3384. [DOI] [PubMed]
  23. Smith, G., Cooper, C. J., Chauhan, V., Lynch, D. E., Healy, P. C. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703.
  24. Song, S., Song, M., Zhang, H. & Yang, L. (2010). Huaxue Yanjiu, 21, 21–25.
  25. Tahiliani, H., Jaisinghani, N. & Ojha, K. G. (2003). Indian J. Chem. Sect. B, 42, 171–174.
  26. Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435sup1.cif

e-71-00385-sup1.cif (258.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989015005228/hg5435Isup2.hkl

e-71-00385-Isup2.hkl (213.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989015005228/hg5435Isup3.cml

CCDC reference: 1053989

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES