Abstract
A labile selenium donor compound, selenophosphate, is formed from selenide and ATP by selenophosphate synthetase. A divalent metal ion, Mg2+, and a monovalent cation, K+, NH4+, or Rb+, are required for selenophosphate synthetase activity [Veres, Z., Kim, I. Y., Scholz, T. D. & Stadtman, T. C. (1994) J. Biol. Chem. 269, 10597-10603]. Na+ and Li+ are ineffective as activators and in the presence of K+ are inhibitory. Mn-ATP, although not able to replace Mg-ATP for catalytic activity, binds to the enzyme provided an active monovalent cation is present. No Mn-ATP is bound when K+ is replaced with Na+. The requirement for K+, both for Mn-ATP binding and for catalytic activity of the synthetase, indicates a specific monovalent cation-induced conformational state of the enzyme. Previously we reported that activity of the enzyme is markedly inhibited by micromolar levels of Zn2+ in the presence of millimolar levels of Mg2+ [Kim, I. Y., Veres, Z. & Stadtman, T. C. (1993) J. Biol. Chem. 268, 27020-27025]. Binding of Mn-ATP also is decreased upon addition of Zn2+, indicating that the inhibitory effect of Zn2+ is exerted at the substrate-binding step of the overall selenophosphate synthetase reaction. When a cysteine residue at position 17 or 19 is replaced with serine, Mn-ATP binding to these mutant enzymes is unaffected by Zn2+ addition. Direct involvement of these cysteine residues in the zinc binding site was shown by use of 65ZnCl2. Radioactive Zn2+ bound to wild-type enzyme and was retained after gel filtration, but under the same conditions the catalytically inactive Cys-17 mutant protein and the catalytically active Cys-19 mutant enzyme were unlabeled.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bagnara A. S., Finch L. R. Quantitative extraction and estimation of intracellular nucleoside triphosphates of Escherichia coli. Anal Biochem. 1972 Jan;45(1):24–34. doi: 10.1016/0003-2697(72)90004-8. [DOI] [PubMed] [Google Scholar]
- Forchhammer K., Leinfelder W., Boesmiller K., Veprek B., Böck A. Selenocysteine synthase from Escherichia coli. Nucleotide sequence of the gene (selA) and purification of the protein. J Biol Chem. 1991 Apr 5;266(10):6318–6323. [PubMed] [Google Scholar]
- Glass R. S., Singh W. P., Jung W., Veres Z., Scholz T. D., Stadtman T. C. Monoselenophosphate: synthesis, characterization, and identity with the prokaryotic biological selenium donor, compound SePX. Biochemistry. 1993 Nov 30;32(47):12555–12559. doi: 10.1021/bi00210a001. [DOI] [PubMed] [Google Scholar]
- Kim I. Y., Veres Z., Stadtman T. C. Biochemical analysis of Escherichia coli selenophosphate synthetase mutants. Lysine 20 is essential for catalytic activity and cysteine 17/19 for 8-azido-ATP derivatization. J Biol Chem. 1993 Dec 25;268(36):27020–27025. [PubMed] [Google Scholar]
- Kim I. Y., Veres Z., Stadtman T. C. Escherichia coli mutant SELD enzymes. The cysteine 17 residue is essential for selenophosphate formation from ATP and selenide. J Biol Chem. 1992 Sep 25;267(27):19650–19654. [PubMed] [Google Scholar]
- Kramer G. F., Ames B. N. Isolation and characterization of a selenium metabolism mutant of Salmonella typhimurium. J Bacteriol. 1988 Feb;170(2):736–743. doi: 10.1128/jb.170.2.736-743.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landro J. A., Schimmel P. Metal-binding site in a class I tRNA synthetase localized to a cysteine cluster inserted into nucleotide-binding fold. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2261–2265. doi: 10.1073/pnas.90.6.2261. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leinfelder W., Forchhammer K., Veprek B., Zehelein E., Böck A. In vitro synthesis of selenocysteinyl-tRNA(UCA) from seryl-tRNA(UCA): involvement and characterization of the selD gene product. Proc Natl Acad Sci U S A. 1990 Jan;87(2):543–547. doi: 10.1073/pnas.87.2.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leinfelder W., Forchhammer K., Zinoni F., Sawers G., Mandrand-Berthelot M. A., Böck A. Escherichia coli genes whose products are involved in selenium metabolism. J Bacteriol. 1988 Feb;170(2):540–546. doi: 10.1128/jb.170.2.540-546.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller W. T., Hill K. A., Schimmel P. Evidence for a "cysteine-histidine box" metal-binding site in an Escherichia coli aminoacyl-tRNA synthetase. Biochemistry. 1991 Jul 16;30(28):6970–6976. doi: 10.1021/bi00242a023. [DOI] [PubMed] [Google Scholar]
- Nureki O., Kohno T., Sakamoto K., Miyazawa T., Yokoyama S. Chemical modification and mutagenesis studies on zinc binding of aminoacyl-tRNA synthetases. J Biol Chem. 1993 Jul 25;268(21):15368–15373. [PubMed] [Google Scholar]
- Reuben J., Kayne F. J. Thallium-205 nuclear magnetic resonance study of pyruvate kinase and its substrates. Evidence for a substrate-induced conformational change. J Biol Chem. 1971 Oct 25;246(20):6227–6234. [PubMed] [Google Scholar]
- Stadtman T. C., Davis J. N., Zehelein E., Böck A. Biochemical and genetic analysis of Salmonella typhimurium and Escherichia coli mutants defective in specific incorporation of selenium into formate dehydrogenase and tRNAs. Biofactors. 1989 Mar;2(1):35–44. [PubMed] [Google Scholar]
- Veres Z., Kim I. Y., Scholz T. D., Stadtman T. C. Selenophosphate synthetase. Enzyme properties and catalytic reaction. J Biol Chem. 1994 Apr 8;269(14):10597–10603. [PubMed] [Google Scholar]
- Veres Z., Tsai L., Scholz T. D., Politino M., Balaban R. S., Stadtman T. C. Synthesis of 5-methylaminomethyl-2-selenouridine in tRNAs: 31P NMR studies show the labile selenium donor synthesized by the selD gene product contains selenium bonded to phosphorus. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):2975–2979. doi: 10.1073/pnas.89.7.2975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wittwer A. J., Stadtman T. C. Biosynthesis of 5-methylaminomethyl-2-selenouridine, a naturally occurring nucleoside in Escherichia coli tRNA. Arch Biochem Biophys. 1986 Aug 1;248(2):540–550. doi: 10.1016/0003-9861(86)90507-2. [DOI] [PubMed] [Google Scholar]
- Wittwer A. J., Tsai L., Ching W. M., Stadtman T. C. Identification and synthesis of a naturally occurring selenonucleoside in bacterial tRNAs: 5-[(methylamino)methyl]-2-selenouridine. Biochemistry. 1984 Sep 25;23(20):4650–4655. doi: 10.1021/bi00315a021. [DOI] [PubMed] [Google Scholar]