Skip to main content
Genome Announcements logoLink to Genome Announcements
. 2015 May 21;3(3):e00378-15. doi: 10.1128/genomeA.00378-15

Draft Genome Sequence of Rhodococcus sp. Strain 311R

Elham Ehsani a, Ruy Jauregui b, Robert Geffers c, Michael Jareck c, Nico Boon a, Dietmar H Pieper b, Ramiro Vilchez-Vargas a,
PMCID: PMC4440945  PMID: 25999565

Abstract

Here, we report the draft genome sequence of Rhodococcus sp. strain 311R, which was isolated from a site contaminated with alkanes and aromatic compounds. Strain 311R shares 90% of the genome of Rhodococcus erythropolis SK121, which is the closest related bacteria.

GENOME ANNOUNCEMENT

Members of the genus Rhodococcus are aerobic, Gram-positive, nonmotile, nonsporulating, slow-growing, high-GC, and nocardioform actinomycetes (1). Rhodococcus species show remarkable metabolic versatility, including the ability to degrade hexane (2), benzene (3), polychlorinated biphenyl (4), polybrominated diphenyl ethers (5), and aromatic alcohols (6), and they are able to bioconvert a diverse range of organic compounds into triacylglycerols for use as biofuels (7). Moreover, Rhodococcus equi has been described as a pathogen responsible for bronchopneumonia in young foals (8, 9), and recently, Rhodococcus sp. strain BG43, closely related to Rhodococcus erythropolis, has been described as a degrader of the Pseudomonas quinolone signal, a quorum-sensing signal molecule employed by the opportunistic pathogen Pseudomonas aeruginosa (10).

Here, we present the draft genome sequence of Rhodococcus sp. strain 311R (taxon identification [ID] 1617904), isolated from soil of a hydrocarbon-contaminated environment (1113) and capable of growing in benzene, decane, phenol, or anthranilate as a sole carbon source.

The genome was sequenced using the Illumina MiSeq platform, which generated paired-end reads sequences of 250 bp, and assembled using Edena (14, 15), producing 128 contigs with a total genome size of 6,343,721 bp (62.57% G+C content; N50, 88.31 Kbp; mean, 49.22 Kb), with an average of 43.7-fold coverage. Automatic annotation was performed using the RAST server version 4.0 (16), generating 6,091 features potentially assigned to protein-coding genes (open reading frames [ORFs]).

A comparison between the draft genome of 311R and the 12 genomes/draft genomes of Rhodococcus sp. DK17 (17), Rhodococcus sp. JVH1 (18), R. jostii RHA1 (19), R. erythropolis PR4 (20), R. erythropolis SK121 (BioProject PRJNA55853), R. erythropolis CCM2595 (21), R. erythropolis R138 (22), R. opacus B4 (3), R. opacus PD630 (7), R. equi 103S (8), R. pyridinivorans SB3094 (23), and Rhodococcus sp. Chr-9 (24) showed that the closest strain to 331R is R. erythropolis SK121, with an average 90.5% (amino acid sequence) ORF similarity. The two strains share 5,445 ORFs, with >80% similarity (88% of the whole genome), and 354 ORFs observed in the genome of the strain 311R are absent from the genome of strain SK121, indicating that these strains belong to different species.

Nucleotide sequence accession number.

This draft genome sequencing project has been deposited in the European Nucleotide Archive under the accession number CFHW00000000.

ACKNOWLEDGMENTS

This work was funded by MAGICPAH from the European Commission, and the Inter-University Attraction Pole (IUAP) μ-manager was financed by the Belgian Science Policy (BELSPO) (grant P7/25).

We thank Cristina Pintucci for her critical reading of the manuscript.

Footnotes

Citation Ehsani E, Jauregui R, Geffers R, Jareck M, Boon N, Pieper DH, Vilchez-Vargas R. 2015. Draft genome sequence of Rhodococcus sp. strain 311R. Genome Announc 3(3):e00378-15. doi:10.1128/genomeA.00378-15.

REFERENCES

  • 1.Bell KS, Philp JC, Aw DW, Christofi N. 1998. The genus Rhodococcus. J Appl Microbiol 85:195–210. doi: 10.1046/j.1365-2672.1998.00525.x. [DOI] [PubMed] [Google Scholar]
  • 2.Lee EH, Kim J, Cho KS, Ahn YG, Hwang GS. 2010. Degradation of hexane and other recalcitrant hydrocarbons by a novel isolate, Rhodococcus sp. EH831. Environ Sci Pollut Res Int 17:64–77. doi: 10.1007/s11356-009-0238-x. [DOI] [PubMed] [Google Scholar]
  • 3.Na KS, Kuroda A, Takiguchi N, Ikeda T, Ohtake H, Kato J. 2005. Isolation and characterization of benzene-tolerant Rhodococcus opacus strains. J Biosci Bioeng 99:378–382. doi: 10.1263/jbb.99.378. [DOI] [PubMed] [Google Scholar]
  • 4.Takeda H, Shimodaira J, Yukawa K, Hara N, Kasai D, Miyauchi K, Masai E, Fukuda M. 2010. Dual two-component regulatory systems are involved in aromatic compound degradation in a polychlorinated-biphenyl degrader, Rhodococcus jostii RHA1. J Bacteriol 192:4741–4751. doi: 10.1128/JB.00429-10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Robrock KR, Mohn WW, Eltis LD, Alvarez-Cohen L. 2011. Biphenyl and ethylbenzene dioxygenases of Rhodococcus jostii RHA1 Transform PBDEs. Biotechnol Bioeng 108:313–321. doi: 10.1002/bit.22952. [DOI] [PubMed] [Google Scholar]
  • 6.Peng X, Taki H, Komukai S, Sekine M, Kanoh K, Kasai H, Choi SK, Omata S, Tanikawa S, Harayama S, Misawa N. 2006. Characterization of four Rhodococcus alcohol dehydrogenase genes responsible for the oxidation of aromatic alcohols. Appl Microbiol Biotechnol 71:824–832. doi: 10.1007/s00253-005-0204-6. [DOI] [PubMed] [Google Scholar]
  • 7.Holder JW, Ulrich JC, DeBono AC, Godfrey PA, Desjardins CA, Zucker J, Zeng Q, Leach AL, Ghiviriga I, Dancel C, Abeel T, Gevers D, Kodira CD, Desany B, Affourtit JP, Birren BW, Sinskey AJ. 2011. Comparative and functional genomics of Rhodococcus opacus PD630 for biofuels development. PLoS Genet 7:e1002219. doi: 10.1371/journal.pgen.1002219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Letek M, González P, Macarthur I, Rodríguez H, Freeman TC, Valero-Rello A, Blanco M, Buckley T, Cherevach I, Fahey R, Hapeshi A, Holdstock J, Leadon D, Navas J, Ocampo A, Quail MA, Sanders M, Scortti MM, Prescott JF, Fogarty U, Meijer WG, Parkhill J, Bentley SD, Vazquez-Boland JA. 2010. The genome of a pathogenic Rhodococcus: cooptive virulence underpinned by key gene acquisitions. PLoS Genet 6:e1001145. doi: 10.1371/journal.pgen.1001145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Meijer WG, Prescott JF. 2004. Rhodococcus equi. Vet Res 35:383–396. doi: 10.1051/vetres:2004024. [DOI] [PubMed] [Google Scholar]
  • 10.Muller C, Birmes FS, Niewerth H, Fetzner S. 2014. Conversion of the Pseudomonas aeruginosa quinolone signal (PQS) and related alkylhydroxyquinolines by Rhodococcus sp. strain BG43. Appl Environ Microbiol. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Jauregui R, Rodelas B, Geffers R, Boon N, Pieper DH, Vilchez-Vargas R. 2014. Draft genome sequence of the naphthalene degrader Herbaspirillum sp. strain RV1423. Genome Announc 2(2):e00188-14. doi: 10.1128/genomeA.00188-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Kabelitz N, Machackova J, Imfeld G, Brennerova M, Pieper DH, Heipieper HJ, Junca H. 2009. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX. Appl Microbiol Biotechnol 82:565–577. doi: 10.1007/s00253-009-1868-0. [DOI] [PubMed] [Google Scholar]
  • 13.Vilchez-Vargas R, Geffers R, Suárez-Diez M, Conte I, Waliczek A, Kaser VS, Kralova M, Junca H, Pieper DH. 2013. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 15:1016–1039. doi: 10.1111/j.1462-2920.2012.02752.x. [DOI] [PubMed] [Google Scholar]
  • 14.Hernandez D, François P, Farinelli L, Osterås M, Schrenzel J. 2008. De novo bacterial genome sequencing: millions of very short reads assembled on a desktop computer. Genome Res 18:802–809. doi: 10.1101/gr.072033.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Hernandez D, Tewhey R, Veyrieras JB, Farinelli L, Østerås M, François P, Schrenzel J. 2014. De novo finished 2.8 Mbp Staphylococcus aureus genome assembly from 100 bp short and long range paired-end reads. Bioinformatics 30:40–49. doi: 10.1093/bioinformatics/btt590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O. 2008. The RAST server: Rapid Annotations using Subsystems Technology. BMC Genomics 9:75. doi: 10.1186/1471-2164-9-75. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Yoo M, Kim D, Choi KY, Chae JC, Zylstra GJ, Kim E. 2012. Draft genome sequence and comparative analysis of the superb aromatic-hydrocarbon degrader Rhodococcus sp. strain DK17. J Bacteriol 194:4440. doi: 10.1128/JB.00844-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Brooks SL, Van Hamme JD. 2012. Whole-genome shotgun sequence of Rhodococcus species strain JVH1. J Bacteriol 194:5492–5493. doi: 10.1128/JB.01066-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.McLeod MP, Warren RL, Hsiao WW, Araki N, Myhre M, Fernandes C, Miyazawa D, Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A, Morin RD, Yang G, Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJ, Holt R, Brinkman FS, Miyauchi K, Fukuda M, Davies JE, Mohn WW, Eltis LD. 2006. The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proc Natl Acad Sci USA 103:15582–15587. doi: 10.1073/pnas.0607048103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N, Tajima T, Sekigawa T, Kosugi H, Matsuo Y, Nishiko R, Imamura K, Ito M, Narita H, Tago S, Fujita N, Harayama S. 2006. Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8:334–346. doi: 10.1111/j.1462-2920.2005.00899.x. [DOI] [PubMed] [Google Scholar]
  • 21.Strnad H, Patek M, Fousek J, Szokol J, Ulbrich P, Nesvera J, Paces V, Vlcek C. 2014. Genome sequence of Rhodococcus erythropolis strain CCM2595, a phenol derivative-degrading bacterium. Genome Announc 2(2):e00208-14. doi: 10.1128/genomeA.00208-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Kwasiborski A, Mondy S, Beury-Cirou A, Faure D. 2014. Genome sequence of the quorum-quenching Rhodococcus erythropolis strain R138. Genome Announc 2(2):e00224-14. doi: 10.1128/genomeA.00224-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Dueholm MS, Albertsen M, D’Imperio S, Tale VP, Lewis D, Nielsen PH, Nielsen JL. 2014. Complete genome of Rhodococcus pyridinivorans SB3094, a methyl-ethyl-ketone-degrading bacterium used for bioaugmentation. Genome Announc 2(3):e00525-14. doi: 10.1128/genomeA.00525-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Sun JQ, Xu L, Wang LJ, Wu XL. 2015. Draft genome sequence of a Rhodococcus strain isolated from tannery wastewater treatment sludge. Genome Announc 3(1):e01463-14. doi: 10.1128/genomeA.01463-14. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genome Announcements are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES