Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1972 Jan;1(1):17–21. doi: 10.1128/aac.1.1.17

Activity of Lividomycin Against Pseudomonas aeruginosa: Its Inactivation by Phosphorylation Induced by Resistant Strains

Fujio Kobayashi a,1, Masahito Yamaguchi a, Susumu Mitsuhashi a
PMCID: PMC444159  PMID: 4207755

Abstract

The antibacterial activity and enzymatic inactivation of lividomycin, a new aminoglycosidic antibiotic, were studied with 13 strains of Pseudomonas aeruginosa. The minimal inhibitory concentration of lividomycin was 12.5 to 25 μg/ml, and three strains were resistant to high concentrations of lividomycin (more than 200 μg/ml). It was found that P. aeruginosa TI-13 and K-11, highly lividomycin-resistant strains of clinical origin, strongly inactivated the drug. The third resistant strain, Km-41/R, was developed in vitro. Unlike the other resistant strains, Km-41/R, was developed in vitro. Unlike the other resistant strains, Km-41/R did not inactivate the drug, indicating that different mechanisms were involved in lividomycin resistance. By use of a cell-free extract from P. aeruginosa TI-13, the inactivation of lividomycin was found to be caused by the formation of a monophosphorylated product of the drug.

Full text

PDF
17

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANDURSKI R. S., AXELROD B. The chromatographic identification of some biologically important phosphate esters. J Biol Chem. 1951 Nov;193(1):405–410. [PubMed] [Google Scholar]
  2. Cooper D. J., Marigliano H. M., Yudis M. D., Traubel T. Recent developments in the chemistry of gentamicin. J Infect Dis. 1969 Apr-May;119(4):342–342. doi: 10.1093/infdis/119.4-5.342. [DOI] [PubMed] [Google Scholar]
  3. Doi O., Kondo S., Tanaka N., Umezawa H. Purification and properties of kanamycin-phosphorylating enzyme from Pseudomonas aeruginosa. J Antibiot (Tokyo) 1969 Jun;22(6):273–282. doi: 10.7164/antibiotics.22.273. [DOI] [PubMed] [Google Scholar]
  4. Doi O., Miyamoto M., Tanaka N., Umezawa H. Inactivation and phosphorylation of kanamycin by drug-resistant Staphylococcus aureus. Appl Microbiol. 1968 Sep;16(9):1282–1284. doi: 10.1128/am.16.9.1282-1284.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doi O., Ogura M., Tanaka N., Umezawa H. Inactivation of kanamycin, neomycin, and streptomycin by enzymes obtained in cells of Pseudomonas aeruginoa. Appl Microbiol. 1968 Sep;16(9):1276–1281. doi: 10.1128/am.16.9.1276-1281.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harwood J. H., Smith D. H. Resistance factor-mediated streptomycin resistance. J Bacteriol. 1969 Mar;97(3):1262–1271. doi: 10.1128/jb.97.3.1262-1271.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kobayashi F., Yamaguchi M., Mitsuhashi S. Inactivation of dihydrostreptomycin by Pseudomonas aeruginosa. Jpn J Microbiol. 1971 Jul;15(4):381–382. doi: 10.1111/j.1348-0421.1971.tb00596.x. [DOI] [PubMed] [Google Scholar]
  8. Kobayashi F., Yamaguchi M., Mitsuhashi S. Phosphorylated inactivation of aminoglycosidic antibiotics by Pseudomonas aeruginosa. Jpn J Microbiol. 1971 May;15(3):265–272. doi: 10.1111/j.1348-0421.1971.tb00578.x. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Mitsuhashi S., Kobayashi F., Yamaguchi M. Enzymatic inactivation of gentamicin C components by cell-free extract from Pseudomonas aeruginosa. J Antibiot (Tokyo) 1971 Jun;24(6):400–401. doi: 10.7164/antibiotics.24.400. [DOI] [PubMed] [Google Scholar]
  11. Oda T., Mori T., Kyotani Y., Nakayama M. Studies on new antibiotic lividomycins. IV. Structure of lividomycin A. J Antibiot (Tokyo) 1971 Aug;24(8):511–518. doi: 10.7164/antibiotics.24.511. [DOI] [PubMed] [Google Scholar]
  12. Okamoto S., Suzuki Y. Chloramphenicol-, dihydrostreptomycin-, and kanamycin-inactivating enzymes from multiple drug-resistant Escherichia coli carrying episome 'R'. Nature. 1965 Dec 25;208(5017):1301–1303. doi: 10.1038/2081301a0. [DOI] [PubMed] [Google Scholar]
  13. Ozanne B., Benveniste R., Tipper D., Davies J. Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol. 1969 Nov;100(2):1144–1146. doi: 10.1128/jb.100.2.1144-1146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tanaka N. Biochemical studies on gentamicin resistance. J Antibiot (Tokyo) 1970 Sep;23(9):469–471. doi: 10.7164/antibiotics.23.469. [DOI] [PubMed] [Google Scholar]
  15. Umezawa H., Doi O., Ogura M., Kondo S., Tanaka N. Phosphorylation and inactivation of kanamycin by Pseudomonas aeruginosa. J Antibiot (Tokyo) 1968 Feb;21(2):154–155. doi: 10.7164/antibiotics.21.154. [DOI] [PubMed] [Google Scholar]
  16. Umezawa H., Okanishi M., Kondo S., Hamana K., Utahara R., Maeda K., Mitsuhashi S. Phosphorylative inactivation of aminoglycosidic antibiotics by Escherichia coli carrying R factor. Science. 1967 Sep 29;157(3796):1559–1561. [PubMed] [Google Scholar]
  17. Umezawa H., Okanishi M., Utahara R., Maeda K., Kondo S. Isolation and structure of kanamycin inactivated by a cell free system of kanamycin-resistant E. coli. J Antibiot (Tokyo) 1967 Jul;20(3):136–141. [PubMed] [Google Scholar]
  18. Umezawa H., Takasawa S., Okanishi M., Utahara R. Adenylylstreptomycin, a product of streptomycin inactivated by E. coli carrying R factor. J Antibiot (Tokyo) 1968 Jan;21(1):81–82. doi: 10.7164/antibiotics.21.81. [DOI] [PubMed] [Google Scholar]
  19. Yamada T., Tipper D., Davies J. Enzymatic inactivation of streptomycin by R factor-resistant Escherichia coli. Nature. 1968 Jul 20;219(5151):288–291. doi: 10.1038/219288a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES