Abstract
Optimal conditions for producing consistent yields of antimycin A in chemically defined medium included: (i) initial pH of 6.8 to 7.1; (ii) no iron supplementation; (iii) 2 g of dl-tryptophan per liter; and antibiotic extraction after 7 to 9 days of growth.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Downer D. N., Davis W. B., Byers B. R. Repression of phenolic acid-synthesizing enzymes and its relation to iron uptake in Bacillus subtilis. J Bacteriol. 1970 Jan;101(1):181–187. doi: 10.1128/jb.101.1.181-187.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raman Kutty M., Kannan L. V., Rehacek Z. Effect of phosphate on biosynthesis of antimycin A and production and utilization of poly-beta-hydroxybutyrate by Streptomyces antibioticus. Indian J Biochem. 1969 Dec;6(4):230–231. [PubMed] [Google Scholar]
- Rehácek Z., Ramankutty M., Kozová J. Respiratory chain of antimycin A-producing Streptomyces antibioticus. Appl Microbiol. 1968 Jan;16(1):29–32. doi: 10.1128/am.16.1.29-32.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vezina C. Antimycin A, a teleocidal antibiotic. Antimicrob Agents Chemother (Bethesda) 1966;6:757–766. doi: 10.1128/AAC.6.6.757. [DOI] [PubMed] [Google Scholar]
- Young I. G., Gibson F. Regulation of the enzymes involved in the biosynthesis of 2,3-dihydroxybenzoic acid in Aerobacter aerogenes and Escherichia coli. Biochim Biophys Acta. 1969 May 6;177(3):401–411. doi: 10.1016/0304-4165(69)90302-x. [DOI] [PubMed] [Google Scholar]
