Abstract
In vitro protein-synthesizing systems from Escherichia coli can be categorized as either chloramphenicol-sensitive or chloramphenicol-insensitive. The chloramphenicol-sensitive systems used in this study required the presence of factors removed from ribosomes with 1.0 m NH4Cl when chromatographically purified ribosomes were used for amino acid incorporation. These ribosomal wash factors inhibited but did not eliminate amino acid incorporation in chloramphenicol-insensitive systems. For both systems, addition of increasing amounts of the ribosomal wash factors increased the sensitivity to chloramphenicol inhibition.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cameron H. J., Julian G. R. The effect of chloramphenicol on the polysome formation of starved stringent Escherichia coli. Biochim Biophys Acta. 1968 Dec 17;169(2):373–380. doi: 10.1016/0005-2787(68)90045-2. [DOI] [PubMed] [Google Scholar]
- Eisenstadt J. M., Brawerman G. The role of the native subribosomal particles of Escherichia coli in polypeptide chain initiation. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1560–1565. doi: 10.1073/pnas.58.4.1560. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GARDNER R. S., WAHBA A. J., BASILIO C., MILLER R. S., LENGYEL P., SPEYER J. F. Synthetic polynucleotides and the amino acid code. VII. Proc Natl Acad Sci U S A. 1962 Dec 15;48:2087–2094. doi: 10.1073/pnas.48.12.2087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg I. H., Mitsugi K. Sparsomycin inhibition of polypeptide synthesis promoted by synthetic and natural polynucleotides. Biochemistry. 1967 Feb;6(2):372–382. doi: 10.1021/bi00854a002. [DOI] [PubMed] [Google Scholar]
- Herzberg M., Lelong J. C., Revel M. Purification of initiator C from Escherichia coli: a protein which binds messenger RNA and initiator tRNA to the 30 s ribosome. J Mol Biol. 1969 Sep 14;44(2):297–308. doi: 10.1016/0022-2836(69)90176-4. [DOI] [PubMed] [Google Scholar]
- Irvin J. D., Julian G. R. The distribution of 14C-proline peptides synthesized in vitro directed by polycytidylic acid; the effect of chloramphenicol. FEBS Lett. 1970 Jun 1;8(3):129–132. doi: 10.1016/0014-5793(70)80244-7. [DOI] [PubMed] [Google Scholar]
- JULIAN G. R. (14C)LYSINE PEPTIDES SYNTHESIZED IN AN IN VITRO ESCHERICHIA COLI SYSTEM IN THE PRESENCE OF CHLORAMPHENICOL. J Mol Biol. 1965 May;12:9–16. doi: 10.1016/s0022-2836(65)80277-7. [DOI] [PubMed] [Google Scholar]
- KUCAN Z., LIPMANN F. DIFFERENCES IN CHLORAMPHENICOL SENSITIVITY OF CELL-FREE AMINO ACID POLYMERIZATION SYSTEMS. J Biol Chem. 1964 Feb;239:516–520. [PubMed] [Google Scholar]
- Pestka S. Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. J Biol Chem. 1969 Mar 25;244(6):1533–1539. [PubMed] [Google Scholar]
- Salas M., Smith M. A., Stanley W. M., Jr, Wahba A. J., Ochoa S. Direction of reading of the genetic message. J Biol Chem. 1965 Oct;240(10):3988–3995. [PubMed] [Google Scholar]
- Weber M. J., DeMoss J. A. The inhibition by chloramphenicol of nascent protein formation in E. coli. Proc Natl Acad Sci U S A. 1966 May;55(5):1224–1230. doi: 10.1073/pnas.55.5.1224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Weisblum B., Davies J. Antibiotic inhibitors of the bacterial ribosome. Bacteriol Rev. 1968 Dec;32(4 Pt 2):493–528. [PMC free article] [PubMed] [Google Scholar]
