Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1972 Nov;2(5):331–335. doi: 10.1128/aac.2.5.331

Locus of Divalent Cation Inhibition of the Bactericidal Action of Polymyxin B

Chuen-Chin Hsu Chen 1, David S Feingold 1
PMCID: PMC444315  PMID: 4363788

Abstract

The bactericidal effect of polymyxin B upon two Pseudomonas aeruginosa strains and two Escherichia coli strains was studied as a function of the concentration of the divalent cations Ca2+ and Mg2+. Lipid spherules in aqueous suspension (liposomes) were prepared from the bacterial phospholipids and were examined for the release of trapped glucose induced by polymyxin B under similar conditions of divalent cation concentration. In contrast to the bacteria, which were protected markedly from the bactericidal action of polymyxin B by Ca2+ or Mg2+ at concentrations of 2 × 10−3m or less, neither cation had any protective effect on bacterial liposomes at concentrations up to 2 × 10−2m. These observations suggest that divalent cations antagonize the bactericidal effect of polymyxin B indirectly through interaction with the cell wall rather than at the primary membrane locus of action. The interaction of the divalent cations with the cell wall prevents access of the antibiotic to the cytoplasmic membrane by mechanisms that remain unclear.

Full text

PDF
331

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asbell M. A., Eagon R. G. The role of multivalent cations in the organization and structure of bacterial cell walls. Biochem Biophys Res Commun. 1966 Mar 22;22(6):664–671. doi: 10.1016/0006-291x(66)90198-7. [DOI] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Brown M. R., Richards R. M. Effect of ethylenediamine tetraacetate on the resistance of Pseudomonas aeruginosa to antibacterial agents. Nature. 1965 Sep 25;207(5004):1391–1393. doi: 10.1038/2071391a0. [DOI] [PubMed] [Google Scholar]
  4. CLARKE H. B., CUSWORTH D. C., DATTA S. P. Thermodynamic quantities for the dissociation equilibria of biologically important compounds. 3. The dissociations of the magnesium salts of phosphoric acid, glucose 1-phosphoric acid and glycerol 2-phosphoric acid. Biochem J. 1954 Sep;58(1):146–154. doi: 10.1042/bj0580146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CLARKE H. B., DATTA S. P. Thermodynamic quantities for the dissociation equilibria of biologically important compounds. Biochem J. 1956 Dec;64(4):604–606. doi: 10.1042/bj0640604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis S. D., Iannetta A., Wedgwood R. J. Activity of colistin against Pseudomonas aeruginosa: inhibition by calcium. J Infect Dis. 1971 Dec;124(6):610–612. doi: 10.1093/infdis/124.6.610. [DOI] [PubMed] [Google Scholar]
  7. Gray G. W., Wilkinson S. G. The effect of ethylenediaminetetra-acetic acid on the cell walls of some gram-negative bacteria. J Gen Microbiol. 1965 Jun;39(3):385–399. doi: 10.1099/00221287-39-3-385. [DOI] [PubMed] [Google Scholar]
  8. Hamilton-Miller J. M. Damaging effects of ethylenediaminetetra-acetate and penicillins on permeability barriers in Gram-negative bacteria. Biochem J. 1966 Sep;100(3):675–682. doi: 10.1042/bj1000675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kinsky S. C., Haxby J. A., Zopf D. A., Alving C. R., Kinsky C. B. Complement-dependent damage to liposomes prepared from pure lipids and Forssman hapten. Biochemistry. 1969 Oct;8(10):4149–4158. doi: 10.1021/bi00838a036. [DOI] [PubMed] [Google Scholar]
  10. Kinsky S. C., Haxby J., Kinsky C. B., Demel R. A., van Deenen L. L. Effect of cholesterol incorporation on the sensitivity liposomes to the polyene antibiotic, filipin. Biochim Biophys Acta. 1968 Jan 10;152(1):174–185. doi: 10.1016/0005-2760(68)90019-2. [DOI] [PubMed] [Google Scholar]
  11. Koike M., Iida K. Effect of polymyxin on the bacteriophage receptors of the cell walls of gram-negative bacteria. J Bacteriol. 1971 Dec;108(3):1402–1411. doi: 10.1128/jb.108.3.1402-1411.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Leive L. Release of lipopolysaccharide by EDTA treatment of E. coli. Biochem Biophys Res Commun. 1965 Nov 22;21(4):290–296. doi: 10.1016/0006-291x(65)90191-9. [DOI] [PubMed] [Google Scholar]
  13. Lopes J., Inniss W. E. Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide. J Bacteriol. 1969 Nov;100(2):1128–1129. doi: 10.1128/jb.100.2.1128-1130.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. NEWTON B. A. Reversal of the antibacterial activity of polymyxin by divalent cations. Nature. 1953 Jul 25;172(4369):160–161. [PubMed] [Google Scholar]
  15. NEWTON B. A. The properties and mode of action of the polymyxins. Bacteriol Rev. 1956 Mar;20(1):14–27. doi: 10.1128/br.20.1.14-27.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sessa G., Weissmann G. Phospholipid spherules (liposomes) as a model for biological membranes. J Lipid Res. 1968 May;9(3):310–318. [PubMed] [Google Scholar]
  17. Sud I. J., Feingold D. S. Effect of polymyxin B on antibiotic-resistant Proteus mirabilis. Antimicrob Agents Chemother. 1972 May;1(5):417–421. doi: 10.1128/aac.1.5.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sud I. J., Feingold D. S. Mechanism of polymyxin B resistance in Proteus mirabilis. J Bacteriol. 1970 Oct;104(1):289–294. doi: 10.1128/jb.104.1.289-294.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Teuber M. Susceptibility to polymyxin B in penicillin G-induced Proteus mirabilis L forms and spheroplasts. J Bacteriol. 1969 May;98(2):347–350. doi: 10.1128/jb.98.2.347-350.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Weiser R., Asscher A. W., Wimpenny J. In vitro reversal of antibiotic resistance by ethylenediamine tetraacetic acid. Nature. 1968 Sep 28;219(5161):1365–1366. doi: 10.1038/2191365a0. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES