Skip to main content
. Author manuscript; available in PMC: 2015 May 26.
Published in final edited form as: Biometrics. 2007 May 14;63(4):1068–1078. doi: 10.1111/j.1541-0420.2007.00822.x

Table 4.

Analysis of the hypertension data under three scenarios of the within-subject measurement error covariance: (a) IID with same σ2 for SBP and BMI: Σi = σ2I for σ^2=9.2552; (b) Independent with different σ2 for SBP and BMI: Σi = block (σ2 SBPI, σ2 BMII) for σ^2SBP=61.8480 and σ^2BMI=0.7813; (c) Following a structure preferred by information criteria: Σi = block (ΩiSBP, ΩiBMI) where ΩiSBP has Markov structure with ρ^SBP=0.4220 and σ^2SBP=68.7562, and ΩiBMI has Markov structure with ρ^BMI=0.6278 and σ^2BMI=1.0212. Estimated standard errors are in parentheses below each estimate.

Intercept SBPyoung adulthood BMIintercept BMIslope

Estimate p-value Estimate p-value Estimate p-value Estimate p-value
(a) Σi = σ2I
SS −28.30
(7.62)
0.00 0.28
(0.07)
0.00 −0.35
(0.26)
0.17 49.17
(11.98)
0.00
CS −103.20
(15.51)
0.00 0.63
(0.15)
0.00 1.73
(0.23)
0.00 82.78
(11.23)
0.00
(b) Σi = block (σ2 SBPI, σ2 BMII)
GSS −18.03
(2.86)
0.00 0.12
(0.02)
0.00 0.08
(0.05)
0.07 6.81
(1.76)
0.00
GCS −18.36
(2.94)
0.00 0.13
(0.03)
0.00 0.08
(0.05)
0.09 6.80
(1.77)
0.00
(c) Σi = block (ΩiSBP,ΩiBMI) where both ΩiSBP and ΩiBMI have preferred Markov structures
GSS −20.84
(3.72)
0.00 0.16
(0.03)
0.00 0.04
(0.06)
0.46 6.94
(1.99)
0.00
GCS −21.96
(4.25)
0.00 0.17
(0.04)
0.00 0.03
(0.06)
0.61 7.03
(2.11)
0.00