Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1973 Feb;3(2):266–269. doi: 10.1128/aac.3.2.266

Two Enzymes Which Phosphorylate Neomycin and Kanamycin in Escherichia coli Strains Carrying R Factors

M Brzezinska 1, J Davies 1
PMCID: PMC444398  PMID: 4597718

Abstract

Two enzymes which phosphorylate neomycin and kanamycin have been detected in Escherichia coli strains carrying R factors. Neomycin-kanamycin phosphotransferase I can phosphorylate neomycin and kanamycin, but not butirosin. Neomycin-kanamycin phosphotransferase II can phosphorylate all three antibiotics. The enzymes also differ in their response to certain inhibitors of phosphorylation. Neomycin-kanamycin phosphotransferase II is found in certain strains of Pseudomonas aeruginosa.

Full text

PDF
266

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akita E., Tsuruoka T., Ezaki N., Niida T. Studies on antibiotic SF-733. A new antibiotic. II. Chemical structure of antibiotic SF-733. J Antibiot (Tokyo) 1970 Apr;23(4):173–183. doi: 10.7164/antibiotics.23.173. [DOI] [PubMed] [Google Scholar]
  2. Benveniste R., Davies J. R-factor mediated gentamicin resistance: A new enzyme which modifies aminoglycoside antibiotics. FEBS Lett. 1971 May 20;14(5):293–296. doi: 10.1016/0014-5793(71)80282-x. [DOI] [PubMed] [Google Scholar]
  3. Datta N., Hedges R. W., Shaw E. J., Sykes R. B., Richmond M. H. Properties of an R factor from Pseudomonas aeruginosa. J Bacteriol. 1971 Dec;108(3):1244–1249. doi: 10.1128/jb.108.3.1244-1249.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies J. E., Rownd R. Transmissible multiple drug resistance in Enterobacteriaceae. Science. 1972 May 19;176(4036):758–768. doi: 10.1126/science.176.4036.758. [DOI] [PubMed] [Google Scholar]
  5. Davies J., Brzezinska M., Benveniste R. The problems of drug-resistant pathogenic bacteria. R factors: biochemical mechanisms of resistance to aminoglycoside antibiotics. Ann N Y Acad Sci. 1971 Jun 11;182:226–233. doi: 10.1111/j.1749-6632.1971.tb30659.x. [DOI] [PubMed] [Google Scholar]
  6. Dion H. W., Woo P. W., Willmer N. E., Kern D. L., Onaga J., Fusari S. A. Butirosin, a new aminoglycosidic antibiotic complex: isolation and characterization. Antimicrob Agents Chemother. 1972 Aug;2(2):84–88. doi: 10.1128/aac.2.2.84. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Naganawa H., Kondo S., Maeda K., Umezawa H. Structure determinations of enzymatically phosphorylated products of aminoglycosidic antibiotics by proton magnetic resonance. J Antibiot (Tokyo) 1971 Dec;24(12):823–829. doi: 10.7164/antibiotics.24.823. [DOI] [PubMed] [Google Scholar]
  8. Ozanne B., Benveniste R., Tipper D., Davies J. Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol. 1969 Nov;100(2):1144–1146. doi: 10.1128/jb.100.2.1144-1146.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Roe E., Jones R. J., Lowbury E. J. Transfer of anibioic resistanceetween Pseudomonas aeruginosa, Escherichia coli, and other gram-negative bacilli in rns. Lancet. 1971 Jan 23;1(7691):149–152. doi: 10.1016/s0140-6736(71)91930-1. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES