Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1973 May;3(5):562–567. doi: 10.1128/aac.3.5.562

Studies on the Action of Nalidixic Acid in the Yeast Saccharomyces cerevisiae

C A Michels a,1, J Blamire a,2, B Goldfinger a, J Marmur a
PMCID: PMC444458  PMID: 4597731

Abstract

The effect of the antibiotic nalidixic acid on macromolecular metabolism in the yeast Saccharomyces cerevisiae has been studied. It was found that, upon the addition of nalidixic acid to a logarithmically growing culture, there is a transient inhibition of total cell ribonucleic acid, deoxyribonucleic acid, and protein synthesis, after which the cells show an almost complete recovery. In addition, there is no preferential inhibition of yeast mitochondrial deoxyribonucleic acid synthesis.

Full text

PDF
562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartolomé J., Orrego F. Effects of dimethyl sulfoxide on the degradation of ribonucleic acid catalyzed by alkali. Biochemistry. 1970 Nov 10;9(23):4509–4513. doi: 10.1021/bi00825a008. [DOI] [PubMed] [Google Scholar]
  2. Cook T. M., Brown K. G., Boyle J. V., Goss W. A. Bactericidal action of nalidixic acid on Bacillus subtilis. J Bacteriol. 1966 Nov;92(5):1510–1514. doi: 10.1128/jb.92.5.1510-1514.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cook T. M., Deitz W. H., Goss W. A. Mechanism of action of nalidixic acid on Escherichia coli. IV. Effects on the stability of cellular constituents. J Bacteriol. 1966 Feb;91(2):774–779. doi: 10.1128/jb.91.2.774-779.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ebringer L. The action of nalidixic acid on euglena plastids. J Gen Microbiol. 1970 Apr;61(1):141–144. doi: 10.1099/00221287-61-1-141. [DOI] [PubMed] [Google Scholar]
  5. GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI. J Bacteriol. 1964 Oct;88:1112–1118. doi: 10.1128/jb.88.4.1112-1118.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOSS W. A., DEITZ W. H., COOK T. M. MECHANISM OF ACTION OF NALIDIXIC ACID ON ESCHERICHIA COLI.II. INHIBITION OF DEOXYRIBONUCLEIC ACID SYNTHESIS. J Bacteriol. 1965 Apr;89:1068–1074. doi: 10.1128/jb.89.4.1068-1074.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hartwell L. H. Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J Mol Biol. 1971 Jul 14;59(1):183–194. doi: 10.1016/0022-2836(71)90420-7. [DOI] [PubMed] [Google Scholar]
  8. Hollenberg C. P., Borst P. Conditions that prevent rho - -induction by ethidium bromide. Biochem Biophys Res Commun. 1971 Dec 3;45(5):1250–1254. doi: 10.1016/0006-291x(71)90152-5. [DOI] [PubMed] [Google Scholar]
  9. Hutchison H. T., Hartwell L. H., McLaughlin C. S. Temperature-sensitive yeast mutant defective in ribonucleic acid production. J Bacteriol. 1969 Sep;99(3):807–814. doi: 10.1128/jb.99.3.807-814.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. KERRIDGE D. The effect of actidione and other antifungal agents on nucleic acid and protein synthesis in Saccharomyces carlsbergensis. J Gen Microbiol. 1958 Dec;19(3):497–506. doi: 10.1099/00221287-19-3-497. [DOI] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. Luha A. A., Sarcoe L. E., Whittaker P. A. Biosynthesis of yeast mitochondria. Drug effects on the petite negative yeast kluyveromyces lactis. Biochem Biophys Res Commun. 1971 Jul 16;44(2):396–402. doi: 10.1016/0006-291x(71)90613-9. [DOI] [PubMed] [Google Scholar]
  13. Lyman H. Specific inhibition of chloroplast replication in Euglena gracilis by nalidixic acid. J Cell Biol. 1967 Dec;35(3):726–730. doi: 10.1083/jcb.35.3.726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mahler H. R., Perlman P., Henson C., Weber C. Selective effects of chloramphenicol, cycloheximide and nalidixic acid on the biosynthesis of respiratory enzymes in yeast. Biochem Biophys Res Commun. 1968 May 10;31(3):474–480. doi: 10.1016/0006-291x(68)90501-9. [DOI] [PubMed] [Google Scholar]
  15. Pedrini A. M., Geroldi D., Siccardi A., Falaschi A. Studies on the mode of action of nalidixic acid. Eur J Biochem. 1972 Feb 15;25(2):359–365. doi: 10.1111/j.1432-1033.1972.tb01704.x. [DOI] [PubMed] [Google Scholar]
  16. Roth R. M., Dampier C. Dependence of ribonucleic acid synthesis on continuous protein synthesis in yeast. J Bacteriol. 1972 Feb;109(2):773–779. doi: 10.1128/jb.109.2.773-779.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SIEGEL M. R., SISLER H. D. SITE OF ACTION OF CYCLOHEXIMIDE IN CELLS OF SACCHAROMYCES PASTORIANUS. I. EFFECT OF THE ANTIBIOTIC ON CELLULAR METABOLISM. Biochim Biophys Acta. 1964 May 18;87:70–82. doi: 10.1016/0926-6550(64)90048-9. [DOI] [PubMed] [Google Scholar]
  18. Vidová M., Kovác L. Nalidixic acid prevents the induction of yeast cytoplasmic respiration-deficient mutants by intercalating drugs. FEBS Lett. 1972 May 15;22(3):347–351. doi: 10.1016/0014-5793(72)80267-9. [DOI] [PubMed] [Google Scholar]
  19. Wehr C. T., Kudrna R. D., Parks L. W. Effect of putative deoxyribonucleic acid inhibitors on macromolecular synthesis in Saccharomyces cerevisiae. J Bacteriol. 1970 Jun;102(3):636–641. doi: 10.1128/jb.102.3.636-641.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES