Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1973 Aug;4(2):73–79. doi: 10.1128/aac.4.2.73

Isolation of Regulatory Mutants of the Aspartic and Pyruvic Acid Families and Their Effect on Antibiotic Production in Streptomyces lipmanii

Otis W Godfrey 1
PMCID: PMC444509  PMID: 4790941

Abstract

Streptomyces lipmanii L100 produces two β-lactam ring-containing antibiotics: penicillin N and 7-(5-amino-5-carboxy valeramido)-7-methoxy-cephalosporanic acid. These antibiotics are modified tripeptides derived from α-aminoadipic acid, cysteine, and valine. Mutants defective either in the biosynthesis or in the control of amino acids belonging to the aspartic and pyruvic acid families were isolated and characterized with regard to their effect on antibiotic synthesis. In a number of these mutants antibiotic synthesis was either completely inhibited or increased up to threefold over wild-type levels.

Full text

PDF
73

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAHAM E. P., NEWTON G. G. The structure of cephalesporin C. Biochem J. 1961 May;79:377–393. doi: 10.1042/bj0790377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caltrider P. G., Niss H. F. Role of methionine in cephalosporin synthesis. Appl Microbiol. 1966 Sep;14(5):746–753. doi: 10.1128/am.14.5.746-753.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEMAIN A. L., NEWKIRK J. F. Biosynthesis of cephalosporin C. Appl Microbiol. 1962 Jul;10:321–325. doi: 10.1128/am.10.4.321-325.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Elander R. P., Mabe J. A., Hamill R. L., Gorman M. Biosynthesis of pyrrolnitrins by analogue-resistant mutants of Pseudomonas fluorescens. Folia Microbiol (Praha) 1971;16(3):156–165. doi: 10.1007/BF02884206. [DOI] [PubMed] [Google Scholar]
  5. Goulden S. A., Chattaway F. W. End-product control of acetohydroxyacid synthetase by valine in Penicillium chrysogenum Q 176 and a high penicillin-yielding mutant. J Gen Microbiol. 1969 Nov;59(1):111–118. doi: 10.1099/00221287-59-1-111. [DOI] [PubMed] [Google Scholar]
  6. Kaplan M. M., Flavin M. Enzymatic synthesis of L-cystathionine from the succinic ester of L-homoserine. Biochim Biophys Acta. 1965 Jul 8;104(2):390–396. doi: 10.1016/0304-4165(65)90344-2. [DOI] [PubMed] [Google Scholar]
  7. Kirkpatrick J. R., Godfrey O. W. The isolation and characterization of auzotrophs of the aspartic acid family from Streptomyces lipmanii. Folia Microbiol (Praha) 1973;18(2):90–101. doi: 10.1007/BF02872830. [DOI] [PubMed] [Google Scholar]
  8. Kuhn J., Somerville R. L. Mutant strains of Escherichia coli K12 that use D-amino acids. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2484–2487. doi: 10.1073/pnas.68.10.2484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Catabolism of lysine by cyclic and acyclic intermediates. J Biol Chem. 1971 May 10;246(9):2758–2764. [PubMed] [Google Scholar]
  10. Nagarajan R., Boeck L. D., Gorman M., Hamill R. L., Higgens C. E., Hoehn M. M., Stark W. M., Whitney J. G. Beta-lactam antibiotics from Streptomyces. J Am Chem Soc. 1971 May 5;93(9):2308–2310. doi: 10.1021/ja00738a035. [DOI] [PubMed] [Google Scholar]
  11. TROWN P. W., SMITH B., ABRAHAM E. P. Biosynthesis of cephalosporin C from amino acids. Biochem J. 1963 Feb;86:284–291. doi: 10.1042/bj0860284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Whitney J. G., Brannon D. R., Mabe J. A., Wicker K. J. Incorporation of labeled precursors into A16886B, a novel -lactam antibiotic produced by Streptomyces clavuligerus. Antimicrob Agents Chemother. 1972 Mar;1(3):247–251. doi: 10.1128/aac.1.3.247. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES